Industry Current & Voltage Transducers

LEM solutions for electrical measurements

This catalogue summarizes the most common LEM product offerings for industrial, railway, high accuracy, and automotive measurements.

LEM is the market leader in providing innovative and high quality solutions for measuring electrical parameters. Its core products - current and voltage transducers - are used in a broad range of applications including drives & welding, renewable energies & power supplies, traction, high precision, conventional and green vehicle businesses.

With higher accuracy and speed, the feedback signal from LEM transducers enables smoother control and energy consumption reduction of many electrical systems.

At the heart of ... ELEVATORS

In most lifts installed worldwide, LEM transducers prevent the doors closing on passengers. They keep the cabin stable when people enter, and ensure that the lift rides smoothly by adjusting the torque of the motor.

LEM transducers, specifically designed for renewable power systems, control the flow and waveform of energy sent to the grid from photovoltaic and other renewable energy systems. They measure the current to help the windmills and solar installations to work at their maximum efficiency.

Regardless of whether a train is powered by diesel or electricity, traction is provided by electric motors driven by inverters that are relying on LEM transducers to measure, optimize and adjust the power that is sent to the motors, improving both performance and reliability.

At the heart of ... HIGH PRECISION APPLICATIONS

The guality of the image provided by MRI scanners is linked directly to the accuracy of the current measurement. The current transducer used has a direct impact on the image and if the transducer is not precise enough this will lead to a blurred and illegible image. LEM current transducers set a standard for accuracy and are the most precise industrial products in the market today. The transducers provide levels of stability and precision, at about 1-3 parts per million, which makes them references in calibration test benches or in laboratories.

At the heart of ... AUTOMOTIVE

In electric and hybrid vehicles, LEM transducers monitor energy levels to and from the battery and are critical in the control of the electric motors.

It is our business to support you with both standard and customized products to optimize your application.

DRIVES & WELDING MARKET RENEWABLE ENERGIES & POWER SUPPLIES MARKETS

Today, the transducer market has two main technology drivers: first, the desire for a greater degree of comfort and finer regulation, and second, the need to save energy. This means that more and more applications that used to be mechanical are changing to fully electronic control which provides increased reliability, improved regulation and higher energy efficiency. Today, about 15 % of all motors have an inverter control. This inverter can save 50 % of the total energy consumed, which is a huge potential for savings.

The inverter control used in these newer systems requires reliable, accurate current measurement to enable engineers to develop a system with isolated current measurement directly on the motor phases. Energy savings is the key word today and this includes the exploitation of the wind and the sun as alternate energies. To use these renewable sources, in the most profitable way in terms of energy efficiency, the use of power electronics is a must and is essential to drive and control energy in industrial applications. Modern systems are becoming more complex and require precise coordination between the power semiconductors, the system controller, mechanics, and the feedback sensors. Transducers provide the necessary information from the load to fulfill that function. We can compare the use of transducers to adding "eyes" to the system.

They can supply the "brain" of the system, in real time, with information regarding the condition of the controller. LEM products are already used among a broad spectrum of power electronics applications such as industrial motor drives. UPS, welding, robots, cranes, cable cars, ski lifts, elevators, ventilation, air-conditioning, power supplies for computer servers, and telecom.

This trend towards more involved power electronics happens in a general manner in the industrial world, for example, in lighting, domestic appliances, computers and telecom applications. Power electronics increases efficiency by delivering the correct type of power at the most efficient voltage, current and frequency.

TRACTION & TRACKSIDE MARKET

Today, high speed trains, city transit systems (metro, trams, and trolleybuses) and freight trains are the solutions against pollution and interstate traffic immobility, and provide a significant energy savings. Power electronics is essential to drive and control energy in these transportation systems. LEM has been the market leader in traction power electronics applications and development for the last 40 years and leverages this vast experience to supply solutions for isolated current and voltage measurements. LEM transducers provide control and protection to power converters and inverters that regulate energy to the electric motors (for propulsion) and to the auxiliaries (for air conditioning, heating, lighting, electrical doors, ventilation, etc.). This includes the incoming monitoring of the voltage network (changing by crossing European borders) to make the power electronics work accordingly.

Although this is true for on-board applications, LEM has also provided the same control and protection signals for wayside substations.

The rail industry is under constant changes and evolution. As a recent example, the privatization of the rail networks raised new requirements for which LEM provides; the onboard monitoring of power consumption (EM4T II Energy Meter), solutions to trackside applications, rail maintenance and the monitoring of points (switches) machines or signaling conditions with some new transducers families.

LEM is always available to assist in adapting to these evolving technical applications. Four decades of railway experience have contributed to establishing LEM as the market leader with worldwide presence to serve you and provide the efficient, safe and reliable operation of the railways.

HIGH PRECISION MARKET

Certain power-electronics applications require such high performance in accuracy, drift and/or response time that is necessary to switch to other technologies to achieve these goals. The validation of customer equipment is made through recognized laboratories using high-performance test benches supported by high-technology equipment including extremely accurate current transducers. These transducers are still in need today for such traditional applications but are more and more in demand in high-performance industrial applications, specifically medical equipment (scanners, MRI, etc.), precision motor controllers, and metering or accessories for measuring and test equipment. LEM has been the leader for years in producing transducers with high performance and competitive costs for these markets. The 2009 acquisition of the Danish company, Danfysik ACP A/S, as being the world's leader in the development and manufacturing of very-high precision current transducers, reinforced this position.

To achieve this challenging target of accuracy and performance, LEM's current transducers for the high precision market use an established and proven technology, the Fluxgate technology deployed in different alternatives. Thanks to this technology, we can claim accuracies in the parts per million (PPMs) of the nominal magnitude and is representative of the performance achieved.

The high-accuracy product range covers transducers for nominal current measurements from 12.5 A to 24 kA while providing overall accuracies at ambient temperatures (25°C) of only a few PPM. Thermal offset drifts are extremely low, only a few PPM per Kelvin (K).

LEM has been the market leader in industrial, railway, high accuracy power electronics applications and development for the last 40 years and leverages this vast experience to supply solutions for isolated current and voltage measurements.

With more than 2 500 current and voltage transducers in its portfolio, LEM offers a complete range of accurate, reliable, and Galvanically isolated devices for the measurement of currents from 0.25 A to 24 000 A and voltages from 10 V to 4 200 V in various technologies: open loop, closed loop, fluxgate, insulating digital technology, Rogowski, current transformer etc. LEM transducers are designed according to the most demanding international standards (EN50178, EN 50155, EN50124-1, NFF 16101, 16102, etc.) and carry CE marking. UL Recognition (UR) is also available on most models.

We have worldwide ISO 9001, ISO TS 16949 and IRIS (Geneva and Beijing LEM production and design centers) qualification and offer a 5-year warranty on all of our products.

At LEM, we find that our customers not only require an optimal solution to accurately measure the current in their applications, but that they are also looking for a current measurement solution which brings added value to the final application and gives an edge to their competitive environment.

Performance improvement: Customers demand the best solution for all the many applications in the industry worldwide and the transducer business needs to keep up or even anticipate this. LEM remains in close collaboration with its customers and their applications to be able to react quickly to the market requirements and to maintain market leadership position in the transducer industry.

LEM constantly strives to innovate and improve the performance, cost and size of its products.

LEM is a world-wide company with regional sales offices across the globe close to its clients' locations and production facilities in Switzerland, Europe (including Russia and Bulgaria) and Asia (China and Japan) for seamless service everywhere.

We hope you will find this catalogue a useful guide for the selection of our products. Visit our website at www.lem.com and contact our sales network in your region for further assistance. Detailed data sheets and application notes are available upon request.

Sincerely,

Hans-Dieter Huber Vice President Industry

François Gabella CEO LEM

LEM - At the heart of power electronics.

Contents	Page
Typical Applications in Power Electronics	6 - 7
Transducer Technologies	8 - 11

DRS/REU: DRIVES & WELDING, RENEWABLE ENERGIES & POWER SUPPLIES MARKETS

Current transducers, 0.25 5 A	12 - 13
Current transducers, 5 8.34 A	14 - 15
Current transducers, 10 20 A	16 - 17
Programmable HO Series	
Current transducers, 2.67 25 A	18 - 21
Current transducers, 25 40 A	22 - 23
Current transducers, 50 88 A	24 - 25
Current transducers, 100 300 A	26 - 27
Current transducers, 100 366 A	28 - 29
Current transducers, 400 800 A	30 - 31
Current transducers AC, 500 2000 $\rm A_{AC}$	32
Current transducers, 1000 20000 A	32 - 33
Current transducers, Minisens-FHS model, 2 100 A	34 - 37
Current transducers with conditioned	
output, 2 20000 A	38 - 39
Voltage transducers, 10 2500 V	
(without resistor R1)	40
Voltage transducers, 50 4200 V	10 11
(with built in resistor R1)	40 - 41
Wireless Local Energy Meter	42 - 43
TTR: TRACTION & TRACKSIDE MARKET	
Current transducers, Traction On-Board,	
0.4 500 A	44 - 45
Current transducers, Traction On-Board, 1000 4000 A	46 - 47
LTC Series - Modular Current transducers	
Mechanical adaptation accessories	48 - 49
Current transducers,Specific applications, 2 10 A - Fault detection	50
Shunt Isolator, Specific applications, 0.03 V	50

Contents	Page
Current transducers, Specific applications Interference Frequencies Detection 0.1 20 A _{AC}	51
Current transducers, Trackside/Substations, 10 20000 A	52 - 53
Voltage transducers, Traction On-Board (without resistor R1), 10 1500 V	54
Voltage transducers, Traction On-Board (without built in resistor R1), 50 4200 V	54 - 55
Energy Measurement, Traction On-Board EM4T II	56 - 59
Selection Guide - Traction	60 - 61
HIP: HIGH PRECISION MARKET	
Stand-alone Current transducers 12.5 4000 A	62 -63
Rack System Current transducers 40 24000 A	64 -65
AUT: AUTOMOTIVE MARKET	
Applications Overview	66 - 67
Selection Guide - Automotive	68 - 69
LEM'S QUALITY AND STANDARDS	70 - 73
Secondary Connections Options	74
Design Specification Form	75
Selection Parameters	76 - 77
DIMENSION DRAWINGS	78 - 96
Product Coding	97
Symbols and Terms	98
LEM's Warranty	99
LEM International Sales Representatives	100

DRS/REU: DRIVES & WELDING, RENEWABLE ENERGIES & POWER SUPPLIES MARKETS TTR: TRACTION & TRACKSIDE MARKET

HIP: HIGH PRECISION MARKET

Typical Applications in Power Electronics

Typical Applications in Power Electronics

Applications

Transducer Technologies

 Small package size 	 Low power consumption
• Extended measuring range	 No insertion losses
 Reduced weight 	

Operation principle O/L

The magnetic flux created by the primary current $I_{\rm p}$ is concentrated in a magnetic circuit and measured in the air gap using a Hall device. The output from the Hall device is then signal conditioned to provide an exact representation of the primary current at the output.

Closed Loop Current Transducers (C/L)										
Features										
Wide frequency range	Low temperature drift									
Good overall accuracy	Excellent linearity									
Fast response time No insertion losses										

Operation principle C/L

The magnetic flux created by the primary current I_{p} is balanced by a complementary flux produced by driving a current through the secondary windings. A hall device and associated electronic circuit are used to generate the secondary (compensating) current that is an exact representation of the primary current.

Closed Loop Voltage Transducers (C/L)

Features

Measurement of	Good overall accuracy
nigh voltages	 Low temperature drift
Safety isolation	 Excellent linearity

Operation principle C/L

A very small current limited by a series resistor is taken from the voltage to be measured and is driven through the primary coil. The magnetic flux created by the primary current I_{p} is balanced by a complementary flux produced by driving a current through the secondary windings. A hall device and associated electronic circuit are used to generate the secondary (compensating) current that is an exact representation of the primary voltage. The primary resistor (R₁) can be incorporated or not in the transducer.

• Measurement of

• Safety isolation (CV)

• Reduced loading on

the primary (CV)

differential currents (CD)

Closed Loop Fluxgate C Type

Features

• High accuracy

• Excellent linearity

• Very wide frequency range

• Reduced temperature drift

Operation principle
I_{p} I_{r} I_{r

This technology uses two toroidal cores and two secondary windings and operates on a fluxgate principle of Ampere-turns compensation. For the voltage type a small (few mA) current is taken from the voltage line to be measured and is driven through the primary coil and the primary resistor.

Closed Loop Fluxgate CAS-CASR-CKSR type

• Very low drift in temperature

(gain and offset)

Galvanic isolation

• Fast response time

Features

- Any kind of AC, DC, pulsed and complex signal High accuracy
- High accuracy in
- temperature

Operation principle

The operating principle is that of a current transformer, equipped with a magnetic sensing element, which senses the flux density in the core. The output of the field sensing element is used as the error signal in a control loop driving a compensating current through the secondary winding of the transformer. At low frequencies, the control loop maintains the flux through the core near zero. As the frequency rises, an increasingly large fraction of the compensating current is due to the operation in transformer mode. The secondary current is therefore the image of the primary current. In a voltage output transducer, the compensating current is converted to a voltage through a precision resistor, and made available at the output of a buffer amplifier.

Closed Loop Fluxgate CTSR type

Features

• Any kind of AC, DC, pulsed • Very low drift in temperature and complex signal (gain and offset) Non-contact measurement Protection against of differential currents parasitic magnetic field High accuracy for small Galvanic isolation residual currents

Operation principle

No use of Hall generators. The magnetic flux created by the primary residual current $I_{\rm PR}$ (sum between $I_{\rm I}$ and $I_{\rm N}$) is compensated by a secondary current. The zero-flux detector is a symmetry detector using a wound core connected to a square-wave generator. The secondary compensating current is an exact representation of the primary current.

In a voltage output transducer, the compensating current is converted to a voltage through a precision resistor, and made available at the output of a buffer amplifier.

The magnetic core is actually made up of a pair of 2 magnetic shells inside which the detector is located.

* For further information, refer to the brochure "Characteristics-Applications-Calculations" or www.lem.com

Transducer Technologies

Closed loop Fluxgate ITC type

Features

- Excellent linearity
- Better than Class 0.5R according to EN 50463
- Outstanding longterm stability

Operation principle

- Very low sensitivity to high external DC and AC fields
- High temperature stability

ITC current transducers are high accuracy transducers using fluxgate technology. This high sensitivity zero-flux detector uses a second wound core (D') for noise reduction. A difference between primary and secondary ampere turns creates an asymmetry in the fluxgate current.

This difference is detected by a microcontroller that controls the secondary current that compensates the primary ampere turns ($I_{p} \times N_{p}$).

This results in a very good accuracy and a very low temperature drift.

The secondary compensating current is an exact representation of the primary current.

Closed Loop Fluxgate IT type

Features

- Very high global accuracy
- Low residual noise
- Excellent linearity < 1 ppm
- Low cross-over distortion
- High temperature stability • Wide frequency range

Operation principle

IT current transducers are high accuracy, large bandwidth transducers using fluxgate technology with no Hall generators. The magnetic flux created by the primary current $I_{\rm p}$ is compensated by a secondary current. The zero-flux detector is a symmetry detector using two wound cores connected to a square-wave generator. The secondary compensating current is an exact representation of the primary current.

9

Transducer Technologies

DV & DVL Type Voltage transduce

Features

- Insulating digital technology
 Measurement of all types of signals: DC, AC, pulsed and complex
 Compact size,
 High galvanic isolation
 Low consumption and losses
 Very high accuracy, Class
 0.5R according to EN
 50463 (DV Models)
- reduced volume

Operation principle

• Low temperature drift

The measuring voltage, $V_{\rm p}$, is applied directly to the transducer primary connections through a resistor network allowing the signal conditioning circuitry to feed a Sigma–Delta modulator that allows to transmit data via one single isolated channel.

The signal is then transmitted to the secondary over an insulating transformer ensuring the insulation between the high voltage side (primary) and the low voltage side (secondary).

The signal is reshaped on the secondary side, then decoded and filtered through a digital filter to feed a micro–controller using a Digital/Analog (D/A) converter and a voltage to current generator.

The recovered output signal is completely insulated against the primary and is an exact representation of the primary voltage.

DI Type Current transducers (Shunt isolator)

Features

- Insulating digital technology
 High galvanic isolation
- Measurement of all types of signals: DC, AC, pulsed and complex
- Compact size, reduced volume
- Very high accuracy, Class 1R according to EN 50463
 Low temperature drift

• Low consumption and losses

Operation principle

DI current transducers (Shunt isolator) must be used combined with an external Shunt.

DI current transducers are working as DV voltage transducers except that the input resistor network used inside the DV is replaced by an external Shunt providing then the voltage input to feed the Sigma–Delta modulator that allows to transmit data via one single isolated channel.

Rogowski Current transducers RT type

Features

- Non-contact measurement
 of AC & pulsed signal
- Thin, lightweight & flexible

measuring head

- Wide frequency range
 Galvanic isolation
- Easy to use: Can be opened

Sensitivity to external field

disturbances minimized

.

Rogowski technology is an Air–core technology (without magnetic circuit). A pick–up coil is magnetically coupled with the flux created by the current to be measured $I_{\rm p}$. A voltage $V_{\rm out}$ is induced on the pick–up coil proportional to the derivative of flux and thus proportional to the derivative of the current to be measured $I_{\rm p}$. Because the derivative of DC is zero this technology is only useful for the measurement of AC or pulsed currents.

The waveform of the measured current requires the integration of the induced voltage $V_{\rm out}$. Therefore, the current transducer may includes an integration function in the processing electronics (option).

PRiME Current Transducers

Features

- AC measurement with wide dynamic range
 No magnetic saturation
- High overload capacityGood linearity
- Accuracy independent of the position of the cable in the aperture and of external fields
 Light weight and small package

Low thermal losses

Operation principle

PRiME operates on the basic Rogowski principle. Instead of a traditional wound coil, the measuring head is made of a number of sensor printed circuit boards (PCBs, each made of two separate air cored coils) mounted on a base–PCB. Each sensor PCB is connected in series to form two concentric loops. The induced voltage at their outputs is then integrated in order to obtain both amplitude and phase information for the current being measured.

Transducer Technologies

Split Core Current transformers AT & TT type											
Features											
 Non-contact measurement AC & pulsed signal No power supply 	 Easy to use: Can be opened Good overall accuracy Galvanic isolation 										

Operation principle

A transformer is a static electrical device transferring energy by inductive coupling between the windings making part of it. It is made with a primary coil (W_p) with N_p turns and a secondary coil (W_s) with N_s turns, wound around the same magnetic core (C).

A varying current $I_{\rm p}$ in the primary winding (assimilated here to the primary conductor crossing the aperture: $N_{\rm p} = 1$) creates a varying magnetic flux in the transformer's core crossing the secondary winding. This varying magnetic flux induces a varying electromotive force or voltage $V_{\rm ind}$ in the secondary winding. Connecting a load to the secondary winding causes a current $I_{\rm s}$ to flow. This compensating secondary current $I_{\rm s}$ is substantially proportional to the primary current $I_{\rm p}$ to be measured so that $N_{\rm p}.I_{\rm p} = N_{\rm s}.I_{\rm s}$

DC currents are not measured and not suitable because they represent a risk of magnetic saturation. The relationship here above is respected only within the bandwidth of the current transformer. Warning!: Never let the output unloaded because there is a risk of safety for users.

Technologies

10

	_м = (0.25 A	·	2 A			DRS	/	RE	U		(Closed-	loop Fluxga	ite
I _{PN}	I _P	ygolor	U _c	V _{out} I _{out}	BW	$\begin{array}{l} X @ I_{PN} \\ T_{A} = 25^{\circ} C \end{array}$	T _A	(Prir	Connection Primary Second:		ction Secondary		ging No	Tupo	tures
A	A	Techr	V	@ I _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	UR	Packa	Гуре	Fea
0.25	± 0.36	C/L	± 15	25 mA	DC-150 (-1dB)	0.5	-10+70	•		•		•	1	LA 25-NP/SP14	
0.3	± 0.5	Fluxgate CTSR	+ 5/0	2.5V or $V_{\rm ref} \pm 1.2V$	DC-3.5 (-1dB)	1	-40+105		•	•		•	2	CTSR 0.3-P ⁵⁾	
0.3	± 0.85	Fluxgate CTSR	+ 5/0	2.5V or $V_{\rm ref} \pm 0.7428V$	DC-9.5 (-1dB)	0.7	-40+105		•	•		•	3	CTSR 0.3-P/SP1 5)	
0.3	± 0.5	Fluxgate CTSR	+ 5/0	2.5V or $V_{\rm ref} \pm 1.2V$	DC-3.5 (-1dB)	1	-40+105		•	•		•	4	CTSR 0.3-P/SP10 5)	TW
0.3	± 0.85	Fluxgate CTSR	+ 5/0	2.5V or $V_{\rm ref} \pm 0.7428V$	DC-9.5 (-1dB)	0.7	-40+105		•	•		•	5	CTSR 0.3-P/SP11 5)	TW
0.3	± 0.5	Fluxgate CTSR	+ 5/0	2.5V or $V_{\rm ref} \pm 1.2V$	DC-3.5 (-1dB)	1	-40+105	•		•		•	6	CTSR 0.3-TP/SP4 5)	
0.3	± 0.5	Fluxgate CTSR	+ 5/0	2.5V or $V_{\rm ref} \pm 1.2V$	DC-3.5 (-1dB)	1	-40+105	•		•		•	7	CTSR 0.3-TP/SP14 5)	TW
0.5	± 0.72	C/L	± 15	25 mA	DC-150 (-1dB)	0.5	-40+70	•		•		•	1	LA 25-NP/SP13	
0.6	± 0.85	Fluxgate CTSR	+ 5/0	2.5V or $V_{\rm ref} \pm 1.4856V$	DC-9.5 (-1dB)	0.7	-40+105		•	•		•	2	CTSR 0.6-P 5)	
0.6	± 0.85	Fluxgate CTSR	+ 5/0	2.5V or $V_{\rm ref} \pm 1.4856V$	DC-9.5 (-1dB)	0.7	-40+105		•	•		•	4	CTSR 0.6-P/SP10 5)	TW
0.6	± 0.85	Fluxgate CTSR	+ 5/0	2.5V or $V_{\rm ref} \pm 1.4856V$	DC-9.5 (-1dB)	0.7	-40+105	•		•		•	6	CTSR 0.6-TP/SP2 5)	
0.6	± 0.85	Fluxgate CTSR	+ 5/0	2.5V or $V_{\rm ref} \pm 1.4856V$	DC-9.5 (-1dB)	0.7	-40+105	•		•		•	7	CTSR 0.6-TP/SP12 5)	TW
1	± 1.5	C/L	± 15	25 mA	DC-150 (-1dB)	0.5	0+70	•		•		•	1	LA 25-NP/SP11	
1	± 1.7	Fluxgate CTSR	+ 5/0	2.5V or $V_{\rm ref} \pm 1.2V$	DC-9.5 (-1dB)	1	-40+105		•	•		•	2	CTSR 1-P 5)	
1.5	± 2.2	C/L	± 15	24 mA	DC-150 (-1dB)	0.5	0+70	•		•		•	1	LA 25-NP/SP9	
1.5	± 5	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-300 (+/-3dB)	0.8	-40+105	•		•		•	8	CKSR 6-NP 5)	
2	± 3	C/L	± 15	24 mA	DC-150 (-1dB)	0.5	0+70	•		•		•	1	LA 25-NP/SP8	
2	± 6.4	C/L	+ 5/0	$2.5 V \pm 0.625 V$	DC-200 (-1dB)	0.7	-40+85	•		•		•	9	LTS 6-NP	
2	± 6.4	C/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-200 (-1dB)	0.7	-40+85	•		•		•	10	LTSR 6-NP 5)	

(10)

$I_{\rm PN}$	$_{\rm N} = 2 \text{A} \dots 5 \text{A}$ DRS / REU									Clos	ed-loop	Fluxgate			
		nology	U _c	V _{out} I _{out}	BW	$\begin{array}{c} X @ I_{PN} \\ T_{A} = 25^{\circ} C \end{array}$	T _A	Pri	Conne	ction Second	dary	R or UL	aging No	Type	atures
		Tech	Ť	@ I _{PN}	112	%	°C	PCB	Aperture, busbar, other	PCB	Other	UF	Pack	iype	Fe
2	± 6.67	Fluxgate CAS	+ 5/0	2.5 V±0.625 V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	11	CAS 6-NP	
2	± 6.67	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	12	CASR 6-NP ⁵⁾	
2.5	± 3.6	C/L	± 15	25 mA	DC-150 (-1dB)	0.5	0+70	•		•		•	1	LA 25-NP/SP7	
2.67	± 6.67	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 8-NP-0000 5)	
2.67	± 6.67	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 8-NSM-0000 5)	
2.67	± 6.67	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 8-NP/ SP33-1000 ⁵⁾	
2.67	± 6.67	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-250 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 8-NSM/ SP33-1000 ⁵⁾	
3	± 9	O/L	± 1215	4 V	DC-50 (-3dB) 1)	2.4	-25+85	•		•		•	15	HXN 03-P	
2 x 3	2 x ± 9	O/L	± 15	2 x 4 V	DC-50 (+/-3dB) ¹⁾	3.75	-40+85	•		•			16	HXD 03-P	DM
3	± 9.6	C/L	+ 5/0	2.5 V±0.625 V	DC-200 (-1dB)	0.7	-40+85	•		•		•	9	LTS 6-NP	
3	± 9.6	C/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-200 (-1dB)	0.7	-40+85	•		•		•	10	LTSR 6-NP ⁵⁾	
3	± 10	Fluxgate CAS	+ 5/0	2.5 V±0.625 V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	11	CAS 6-NP	
3	± 10	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	12	CASR 6-NP 5)	
3	± 10	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-300 (+/-3dB)	0.8	-40+105	•		•		•	8	CKSR 6-NP 5)	
3.75	± 12.75	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-300 (+/-3dB)	0.8	-40+105	•		•		•	8	CKSR 15-NP 5)	
4	± 10	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 8-NP-0000 5)	
4	± 10	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 8-NSM-0000 5)	
4	± 10	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 8-NP/ SP33-1000 5)	
4	± 10	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-250 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 8-NSM/ SP33-1000 ⁵⁾	
5	± 7	C/L	± 15	25 mA	DC-150 (-1dB)	0.5	-40+85	•		•		•	17	LA 25-NP	

(12)

TW = Test Winding DM = Dual Measurement Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com

Notes: Small signal bandwidth to avoid excessive core heating at high frequency
 Ref_{IN} & Ref_{out} modes

(13)

(15)

(16)

I_{PN}	= 5	<u>БА</u>	7.5	Α	DRS /	RE	U /	Open-	–loop			Clo	sed-lo	pop Fluxga	te
I _{PN}	I _P			X @ I _{PN} 7 _A = 25°C		T _A	Co Prima	onneo _{ary}	ction Secon	ction Secondary		ging No	Туре	tures	
A	A	Techr	V	@ I _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	UR	Packa		Fea
5	± 12.5	O/L	+ 5/0	2.5V or $V_{\rm ref}$ ±0.8V	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 15-NP-0000 ⁵⁾	
5	± 12.5	O/L	+ 5/0	2.5V or $V_{\rm ref}$ ±0.8V	DC-250 (-3dB)	1	-40+105	SMD	S	SMD		•	14	HO 15-NSM-0000 5)	
5	± 12.5	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 15-NP/ SP33-1000 ⁵⁾	
5	± 12.5	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-250 (-3dB)	1	-40+105	SMD	S	SMD		•	14	HO 15-NSM/ SP33-1000 5)	
5	± 15	O/L	± 1215	4 V	DC-50 (-3dB) ¹⁾	2.4	-25+85	•		•		•	15	HXN 05-P	
2 x 5	2 x ± 15	O/L	± 15	2 x 4 V	DC-50 (+/-3dB) ¹⁾	3.75	-40+85	•		•			16	HXD 05-P	DM
5	± 16	C/L	+ 5/0	2.5 V±0.625 V	DC-200 (-1dB)	0.7	-40+85	•		•		•	9	LTS 15-NP	
5	± 16	C/L	+ 5/0	2.5V or $V_{\rm ref}$ ±0.625V	DC-200 (-1dB)	0.7	-40+85	•		•		•	10	LTSR 15-NP 5)	
5	± 17	Fluxgate CAS	+ 5/0	2.5 V±0.625 V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	11	CAS 15-NP	
5	± 17	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref}$ ±0.625V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	12	CASR 15-NP 5)	
6	± 9	C/L	± 15	24 mA	DC-150 (-1dB)	0.5	-40+85	•		•		•	17	LA 25-NP	
6	± 19.2	C/L	+ 5/0	2.5 V±0.625 V	DC-200 (-1dB)	0.7	-40+85	•		•		•	9	LTS 6-NP	
6	± 19.2	C/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-200 (-1dB)	0.7	-40+85	•		•		•	10	LTSR 6-NP 5)	
6	± 20	Fluxgate CAS	+ 5/0	2.5 V±0.625 V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	11	CAS 6-NP	
6	± 20	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref}$ ±0.625V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	12	CASR 6-NP 5)	
6	± 20	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref}$ ±0.625V	DC-300 (+/-3dB)	0.8	-40+105	•		•		•	8	CKSR 6-NP 5)	
6.25	± 21.25	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref}$ ±0.625V	DC-300 (+/-3dB)	0.8	-40+105	•		•		•	8	CKSR 25-NP 5)	
7	± 14	C/L	± 15	35 mA	DC-150 (-1dB)	0.5	-25+70	•		•		•	17	LA 35-NP	
7.5	± 18.75	O/L	+ 5/0	2.5V or $V_{\rm ref}$ ±0.8V	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 15-NP-0000 ⁵⁾	
7.5	± 18.75	O/L	+ 5/0	2.5V or $V_{ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	SMD	S	SMD		•	14	HO 15-NSM-0000 5)	
7.5	± 18.75	O/L	+ 3.3/0	1.65V or <i>V</i> _{ref} ±0.460V	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 15-NP/ SP33-1000 5)	
7.5	± 18.75	O/L	+ 3.3/0	1.65V or <i>V</i> _{ref} ±0.460V	DC-250 (-3dB)	1	-40+105	SMD	5	SMD		•	14	HO 15-NSM/ SP33-1000 5)	

I_{\scriptscriptstylePN}	= 7.	5 A	. 8.3	DRS /	RE	U	Open	–loop			Clo	sed–lo	d–loop Fluxgate		
						zO Z		Con		Connection					
$I_{_{\mathrm{PN}}}$	I _P	ology	U _c	$V_{_{ m out}}$	BW	$\begin{array}{l} X @ I_{\rm I} \\ T_{\rm A} = 25 \end{array}$	T _A	Prim	iary	Secor	Idary	r UL	ing Nc	Туре	seur
А	A	echn	V	@ I	kHz		°C		e, ther		~	UR o	ackag	<i></i>	Featu
				FN		%		PCB	Apertur busbar, o	PCE	Othe		<u>م</u>		
7.5	± 24	C/L	+ 5/0	2.5 V±0.625 V	DC-200 (-1dB)	0.7	-40+85	•		•		•	9	LTS 15-NP	
7.5	± 24	C/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-200 (-1dB)	0.7	-40+85	•		•		•	10	LTSR 15-NP 5)	
7.5	± 25.5	Fluxgate CAS	+ 5/0	2.5 V±0.625 V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	11	CAS 15-NP	
7.5	± 25.5	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref}$ ±0.625V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	12	CASR 15-NP 5)	
7.5	± 25.5	Fluxgate CAS	+ 5/0	2.5V or $V_{ref} \pm 0.625V$	DC-300 (+/-3dB)	0.8	-40+105	•		•		•	8	CKSR 15-NP 5)	
8	± 12	C/L	± 15	24 mA	DC-150 (-1dB)	0.5	-40+85	•		•		•	17	LA 25-NP	
8	± 16	C/L	± 15	32 mA	DC-150 (-1dB)	0.5	-25+70	•		•		•	17	LA 35-NP	
8	± 18	C/L	± 1215	24 mA	DC-200 (-1dB)	0.4	-25+85	•		•		•	18	LAH 25-NP	
8	± 20	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 8-NP-0000 ⁵⁾	
8	± 20	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 8-NSM-0000 ⁵⁾	
8	± 20	O/L	+ 3.3/0	1.65V or <i>V</i> _{ref} ±0.460V	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 8-NP/SP33-1000 5)	
8	± 20	O/L	+ 3.3/0	1.65V or $V_{ref} \pm 0.460V$	DC-250 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 8-NSM/ SP33-1000 ⁵⁾	
8.33	± 16.66	C/L	+ 5/0	12.5 mA	DC-300 (-1dB)	0.7	-40+85	•		•		•	19	LTSP 25-NP	
8.33	± 20.83	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 25-NP-0000 ⁵⁾	
8.33	± 20.83	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 25-NSM-0000 5)	
8.33	± 20.83	O/L	+ 3.3/0	1.65V or $V_{ref} \pm 0.460V$	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 25-NP/ SP33-1000 ⁵⁾	
8.33	± 20.83	O/L	+ 3.3/0	1.65V or <i>V</i> _{ref} ±0.460V	DC-250 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 25-NSM/ SP33-1000 ⁵⁾	
8.34	± 26.67	C/L	+ 5/0	2.5 V±0.625 V	DC-200 (-1dB)	0.7	-40+85	•		•		•	9	LTS 25-NP	
8.34	± 26.67	C/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-200 (-1dB)	0.7	-40+85	•		•		•	10	LTSR 25-NP 5)	
8.34	± 28.34	Fluxgate CAS	+ 5/0	2.5 V±0.625 V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	11	CAS 25-NP	
8.34	± 28.34	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref}$ ±0.625V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	12	CASR 25-NP 5)	

<u>Notes:</u> 1) Small signal bandwidth to avoid excessive core heating at high frequency 5) Ref_{IN} & Ref_{out} modes

DM = Dual Measurement

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com

14

8

(11)

(12)

(14)

(13)

$I_{\sf PN}$	= 10	ΟΑ	. 12.	5 A	DRS / F	REL	0	pen–loo	p		C	losed-	-loop	Fluxgate	
						I _{PN} 5°C	T _A	C	onne	ection			0		
$I_{_{\mathrm{PN}}}$	I _P	ology	U _c	V _{out} I	BW	$X \otimes J$ $T_A = 2$	^	Prima	ary	Secon	dary	r UL	ing No	Type	seur
A	A	Techn	v	−out @ I _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	UR of	Packag	iypo	Featu
10	± 25	O/L	+ 5/0	2.5V or V _{ref} ±0.8V	DC-240 (-3dB)	1	-40+105	•		•			20	HLSR 10-P 5)	
10	± 25	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-240 (-3dB)	1	-40+105	SMD		SMD			21	HLSR 10-SM ⁵⁾	
10	± 25	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-240 (-3dB)	1	-40+105	•		•			20	HLSR 10-P/SP33 5)	
10	± 25	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-240 (-3dB)	1	-40+105	SMD		SMD			21	HLSR 10-SM/ SP33 ⁵⁾	
10	± 30	O/L	± 1215	4 V	DC-50 (-3dB) ¹⁾	2.4	-25+85	•		•		•	15	HXN 10-P	
2 x 10	2 x ± 30	O/L	± 15	2 x 4 V	DC-50 (+/-3dB) ¹⁾	3.75	-40+85	•		•			16	HXD 10-P	DM
11	± 22	C/L	± 15	33 mA	DC-150 (-1dB)	0.5	-25+70	•		•		•	17	LA 35-NP	
12	± 18	C/L	± 15	24 mA	DC-150 (-1dB)	0.5	-40+85	•		•		•	17	LA 25-NP	
12	± 27	C/L	± 1215	24 mA	DC-200 (-1dB)	0.4	-25+85	•		•		•	18	LAH 25-NP	
12.5	± 25	C/L	+ 5/0	12.5 mA	DC-300 (-1dB)	0.7	-40+85	•		•		•	19	LTSP 25-NP	
12.5	± 31.25	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 25-NP-0000 ⁵⁾	
12.5	± 31.25	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 25-NSM- 0000 ⁵⁾	
12.5	± 31.25	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 25-NP/ SP33-1000 ⁵⁾	
12.5	± 31.25	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-250 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 25-NSM/ SP33-1000 ⁵⁾	
12.5	± 37.5	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-300 (+/-3dB)	0.8	-40+105	•		•		•	8	CKSR 50-NP ⁵⁾	
12.5	± 40	C/L	+ 5/0	2.5 V±0.625 V	DC-200 (-1dB)	0.7	-40+85	•		•		•	9	LTS 25-NP	
12.5	± 40	C/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-200 (-1dB)	0.7	-40+85	•		•		•	10	LTSR 25-NP 5)	
12.5	± 42.5	Fluxgate CAS	+ 5/0	2.5 V±0.625 V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	11	CAS 25-NP	
12.5	± 42.5	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	12	CASR 25-NP 5)	
12.5	± 42.5	Fluxgate CAS	+ 5/0	2.5V or V _{ref} ±0.625V	DC-300 (+/-3dB)	0.8	-40+105	•		•		•	8	CKSR 25-NP 5)	

I _{PN} :	= 15	бА	20 A	4	DRS / F	REU	Ор	en-loop			Clo	sed-l	loop	Fluxgate	
						I _{PN} 55°C	T _A	С	onne	ection	1		0		
$I_{_{\mathrm{PN}}}$	$I_{\rm P}$	iology	U _c	V _{out} I _{out}	BW	$X_{A} \otimes T_{A} = 2$		Prim	ary	Secor	ndary	r UL	jing Ne	Type	ures
A	A	Techn	v	@ I _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	UR	Packag		Feat
15	± 37.5	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 15-NP-0000 ⁵⁾	
15	± 37.5	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 15-NSM- 0000 ⁵⁾	
15	± 37.5	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 15-NP/ SP33-1000 5)	
15	± 37.5	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-250 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 15-NSM/ SP33-1000 5)	
15	± 45	O/L	± 1215	4 V	DC-50 (-3dB) ¹⁾	2.4	-25+85	•		•		•	15	HXN 15-P	
2 x 15	2 x ± 45	O/L	± 15	2 x 4 V	DC-50 (+/-3dB) ¹⁾	3.75	-40+85	•		•			16	HXD 15-P	DM
15	± 48	C/L	+ 5/0	2.5 V±0.625 V	DC-200 (-1dB)	0.7	-40+85	•		•		•	9	LTS 15-NP	
15	± 48	C/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-200 (-1dB)	0.7	-40+85	•		•		•	10	LTSR 15-NP 5)	
15	± 51	Fluxgate CAS	+ 5/0	2.5 V±0.625 V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	11	CAS 15-NP	
15	± 51	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	12	CASR 15-NP 5)	
15	± 51	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-300 (+/-3dB)	0.8	-40+105	•		•		•	8	CKSR 15-NP 5)	
16.67	± 50	Fluxgate CAS	+ 5/0	2.5 V±0.625 V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	11	CAS 50-NP	
16.67	± 50	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref}$ ±0.625V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	12	CASR 50-NP 5)	
17	± 34	C/L	± 15	34 mA	DC-150 (-1dB)	0.5	-25+70	•		•		•	17	LA 35-NP	
20	± 50	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-240 (-3dB)	1	-40+105	•		•			20	HLSR 20-P 5)	
20	± 50	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-240 (-3dB)	1	-40+105	SMD		SMD			21	HLSR 20-SM ⁵⁾	
20	± 50	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-240 (-3dB)	1	-40+105	•		•			20	HLSR 20-P/ SP33 ⁵⁾	
20	± 50	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-240 (-3dB)	1	-40+105	SMD		SMD			21	HLSR 20-SM/ SP33 5)	
20	± 60	O/L	± 1215	4 V	DC-50 (-3dB) ¹⁾	2.4	-25+85	•		•		•	15	HXN 20-P	
2 x 20	2 x ± 60	O/L	± 15	2 x 4 V	DC-50 (+/-3dB) 1)	3.75	-40+85	•		•			16	HXD 20-P	DM

Notes: 1) Small signal bandwidth to avoid excessive core heating at high frequency 5) Ref_{IN} & Ref_{out} modes

DM = Dual Measurement

Dedicated data sheets are the only recognized reference documents for the given performances and data – Data sheets: www.lem.com

(13)

$I_{\rm DM} = 2.67 \text{ A} \dots 25 \text{ A}$

DRS / REU

	$I_{\rm PN} =$	2.67	۹	. 25	6 A						D	R	S	<u>/ F</u>	REU Open-loop)
	I _{pn}	I _P	ygolor	U _c	V _{out} I _{out}	BW	$\begin{array}{l} X @ I_{PN} \\ T_{A} = 25^{\circ} C \end{array}$	T _A	C	onne	ection Secon	dary	or UL	ging No	Туре	tures
	A	A	Techr	V	@ I _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	UR	Packa		Fea
	2.67 ; 5 ; <mark>8.33</mark>	± 6.67 ; ± 12.5 ; <mark>± 20.83</mark>	O/L	+ 5/0	2.5 ; 1.65 ; 1.5 ; 0.5 V or V _{ref} ±0.8V	DC-100 ; 250 ; 600 (-3dB)	1	-40+105	•		•		•	13	HO 25-NPPR ⁵⁾ Orange for default setting	Ρ
	4 ; 7.5 ; <mark>12.5</mark>	± 10 ; ± 18.75 ; ± 31.25	O/L	+ 5/0	2.5 ; 1.65 ; 1.5 ; 0.5 V or V _{ref} ±0.8V	DC-100 ; 250 ; 600 (-3dB)	1	-40+105	•		•		•	13	HO 25-NPPR ⁵⁾ Orange for default setting	Ρ
1	8 ; 15 ; <mark>25</mark>	± 20 ; ± 37.5 ; ± 62.5	O/L	+ 5/0	2.5 ; 1.65 ; 1.5 ; 0.5 V or V _{ref} ±0.8V	DC-100 ; 250 ; 600 (-3dB)	1	-40+105	•		•		•	13	HO 25-NPPR ⁵⁾ Orange for default setting	Ρ
	2.67 ; 5 ; <mark>8.33</mark>	± 6.67 ; ± 12.5 ; ± 20.83	O/L	+ 5/0	2.5 ; 1.65 ; 1.5 ; 0.5 V or V _{ref} ±0.8V	DC-100 ; 250 ; 600 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 25-NSMPR ⁵⁾ Orange for default setting	Ρ
	4 ; 7.5 ; <mark>12.5</mark>	± 10 ; ± 18.75 ; ± 31.25	O/L	+ 5/0	2.5 ; 1.65 ; 1.5 ; 0.5 V or V _{ref} ±0.8V	DC-100 ; 250 ; 600 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 25-NSMPR ⁵⁾ Orange for default setting	Ρ
	8 ; 15 ; <mark>25</mark>	± 20 ; ± 37.5 ; ± 62.5	O/L	+ 5/0	<mark>2.5</mark> ; 1.65 ; 1.5 ; 0.5 V or V _{ref} ±0.8V	DC-100 ; 250 ; 600 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 25-NSMPR ⁵⁾ Orange for default setting	Ρ
	2.67 ; 5 ; <mark>8.33</mark>	± 6.67 ; ± 12.5 ; ± 20.83	O/L	+ 3.3/0	2.5 ; 1.65 ; 1.5 ; 0.5 V or V _{ref} ±0.460V	DC-100 ; 250 ; 600 (-3dB)	1	-40+105	•		•		•	13	HO 25-NPPR/SP33 ⁵⁾ Orange for default setting	Ρ
	4 ; 7.5 ; 12.5	± 10 ; ± 18.75 ; ± 31.25	O/L	+ 3.3/0	2.5 ; 1.65 ; 1.5 ; 0.5 V or V _{ref} ±0.460V	DC-100 ; 250 ; 600 (-3dB)	1	-40+105	•		•		•	13	HO 25-NPPR/SP33 ⁵⁾ Orange for default setting	Ρ
	8 ; 15 ; <mark>25</mark>	± 20 ; ± 37.5 ; ± 62.5	O/L	+ 3.3/0	2.5 ; 1.65 ; 1.5 ; 0.5 V or V _{ref} ±0.460V	DC-100 ; 250 ; 600 (-3dB)	1	-40+105	•		•		•	13	HO 25-NPPR/SP33 ⁵⁾ Orange for default setting	Ρ
	2.67 ; 5 ; <mark>8.33</mark>	± 6.67 ; ± 12.5 ; <mark>± 20.83</mark>	O/L	+ 3.3/0	2.5 ; 1.65 ; 1.5 ; 0.5 V or V _{ref} ±0.460V	DC-100 ; 250 ; 600 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 25-NSMPR/SP33 ⁵⁾ Orange for default setting	Ρ
	4 ; 7.5 ; 12.5	± 10 ; ± 18.75 ; ± 31.25	O/L	+ 3.3/0	2.5 ; 1.65 ; 1.5 ; 0.5 V or V _{ref} ±0.460V	DC-100 ; 250 ; 600 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 25-NSMPR/SP33 ⁵⁾ Orange for default setting	Ρ
	8 ; 15 ; <mark>25</mark>	± 20 ; ± 37.5 ; ± 62.5	O/L	+ 3.3/0	2.5 ; 1.65 ; 1.5 ; 0.5 V or V _{ref} ±0.460V	DC-100 ; 250 ; 600 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 25-NSMPR/SP33 ⁵⁾ Orange for default setting	Ρ

(14)

Notes:

18

5) Ref_{IN} & Ref_{out} modes

P = Programmable by the user at any time for the current range (between 3 ranges); The internal reference (between 4 references); The response time (between 3 response times) ; Lower comsumption mode ; Overcurrent detection level ; Device faulty indication mode ; Standby mode.

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com

HO SERIES

Current Transducers with Advanced ASIC Technology Integrating Intelligent and Interactive Functions

Any logistics manager will appreciate the value of a single stock item that covers two or more part numbers: in the case of a current transducer, having one type that can cover several current ranges, offer various response times, and provide several choices for the internal reference voltage, all configurable by the engineering team. Achieving that flexibility has been the key motivation for LEM engineers while optimizing the cost and reducing the size, together with improving performance.

Special effort has been focused on a new Application Specific Integrated Circuit (ASIC) to help achieve these goals, resulting in a new generation of ASIC specific current transducers based on the Open Loop Hall effect technology leading to the development of the HO series.

With this ASIC at its heart, the HO models are designed for current measurements from 2.67 A_{RMS} to 25 A_{RMS} nominal, with nine possible current ranges selectable either by digital programmability or by multi-range PCB configuration. Possible nominal ranges of HO 25-NPPR/-NSMPR with the various primary bus bar configurations

		Primary current	
Number of primary turns	Range 1 I _{PN} = 8 A	Range 2 I _{PN} = 15 A	Range 3 $I_{\rm PN}$ = 25 A
1	8 A	15 A	25 A
2	4 A	7.5 A	12.5 A
3	2.67 A	5 A	8.33 A

Numbe primary 1 2 3 New ASIC die, a complete Open Loop Hall effect current transducer on a single chip.

er of turns	Recor	nmen	ded c	onne	ctions
	IN	13 0	12	11 	OUT
	IN	13 0- 8	12	11 × 0 10	OUT
	IN	13 0 0 8	12 0 9 9	11 0 9 10	OUT

Recommended PCB Connection

HO SFRIFS

HO's main benefits include the following

- Three programmable current ranges: 8 A_{RMS}, 15 A_{RMS}, 25 A_{RMS} (25 A_{RMS} set by default)
- A broad range of programmable functions including Low power mode, Standby mode, and EEPROM control (fault reporting)
- Single + 3.3 V or + 5 V power supply (in two different HO versions)
- Offset and gain drifts two times better than the previous generation
- Programmable over-current detection (OCD) function provided on a dedicated pin, to be set by the user over 16 programmable levels up to 5.8 x I_{DN} (the nominal primary current). The OCD output turns on within 2 µs when programmed over-current occurs, switching from a high (5 V) to a low level (0 V). The over-current threshold is detected with 10 % accuracy; the user can set a minimum duration of the OCD output pulse of 1 ms if required, to ensure that a short overload can still be detected by an external micro-controller
- Programmable slow or quick response time (2 to 6 µs) by choosing specific output filters
- Four programmable internal reference voltages: 2.5, 1.65, 1.5 or 0.5 V (with + 5 V power supply), available on a dedicated pin
- Possible use of an external voltage reference from 0.5 to 2.65 V (with + 5 V power supply)
- Measuring range up to 2.5 x I_{PN}
- -40 to +105 °C operating temperature range.
- High accuracy at +25 °C: 1% of I_{PN} and at +85 °C: 2.9% of I_{PN}
- Creepage & clearance distances: 8 mm + Comparative Tracking Index 600 V
- Small device outline: 12 (W) x 23 (L) x 12 (H)mm
- Through-hole and SMT packages

Key parameters of HO 25-NPPR/-NSMPR models

Programmable Rating I_{PN} (A _{RMS})	8 or 15 or 25	Accuracy @ +25 °C (% of I _{PN})	1
Measuring range $I_{_{\mathrm{PM}}}$ (A)	+/- 2.5 x $I_{\rm PN}$	Accuracy @ +105 °C (% of I _{PN})	3.8
Linearity (% of $I_{\rm PN}$)	0.5	Programmable internal Reference V _{Ref OUT} (V)	0.5 / 1.5 / 1.65 / 2.5
Supply Voltage (VDC)	+ 3.3 or + 5 +/-10 %	Frequency Bandwidth (kHz) (3 dB)	DC100 to 600
Analog Voltage Output (V) @ $I_{\rm PN}$	0.8	Offset drift (mV/K)	+/-0.095
Programmable Response time @ 90 % of $I_{\rm PN}$ tr (us)	2 - 3.5 - 6	Gain drift (ppm/K)	+/- 220

Users program the HO transducer through a connection to a host microcontroller: when the V_{Ref} pin is forced to the supply voltage, the output pin becomes the I/O port of a single wire bus interface. Over this interface, serial data comprising a 12-bit word conveys the user's configuration choices, such as, amongst others: range selection, the internal refe rence voltage, and the over-current detection threshold. Data is sent over this interface to the transducer at 10 kbits/s, and programming takes only a few hundred milliseconds. This programming procedure may be carried out at any time, so the operating parameters of the HO transducer may be re-assigned, even during operation of the device in its application.

For users who require transducers already programmed to a single set of operating parameters, LEM can also offer models with performance and function already set at the factory.

HO SFRIFS

HO name and codification

HO 15-NP/SP33- $^{1(2)3)4}$ \rightarrow + 3.3 V power supply HO 15-NP- $^{1(2)3)4}$ \rightarrow + 5 V power supply

As an example:

HO 25-NP-0000: performances and functions are set as follows:

- First digit = 0 → Reference out = 2.5 V Second digit = 0 → Response time = 3.5 us
- Third digit = 0 → Control EEPROM = YES
- Fourth digit = 0 → Overcurrent detection = 2.9 x I_{PN}

20

REU DRS The 1)2)3)4) digits indicate the individual transducer

```
→ Code: 0
             → Code: 1
             → Code: 2
             → Code: 3
            → Code: 4
(Low power mode engaged)
             → Code: 0
             → Code: 1
             → Code: 2
             → Code: 0
             → Code: 1
             → Code: 0
             → Code: 1
             → Code: 2
             → Code: 3
                           SET THRESH = 0
             → Code: 4
            → Code: 5
             → Code: 6
             → Code: 7
             → Code: A
            → Code: B
             → Code: C
             → Code: D
                           SET THRESH = 1
             → Code: E
             → Code: F
             → Code: G
             → Code: H
```

REU -DRS

I_{PN}	= 25	5 A	. 40 A	<u> </u>	DRS / R	EU	Ор	en-loo	р		C	losed	–loop	Fluxgat	e
I _{PN}	I _P	nology	U _c	V _{out} I _{out}	BW	$\begin{array}{l} X @ I_{PN} \\ T_{A} = 25^{\circ} C \end{array}$	T _A	C Prim	onn	ectio Secor	n ndary	t or UL	aging No	Туре	atures
A	A	Tech	V	@ I _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	UR	Pack		Fe
25	± 36	C/L	± 15	25 mA	DC-150 (-1dB)	0.5	-40+85	•		•		•	17	LA 25-NP	
25	± 36	C/L	± 15	25 mA	DC-150 (-1dB)	0.5	-40+85	•		•		•	22	LA 25-NP/SP25	LP
25	± 50	C/L	+ 5/0	12.5 mA	DC-300 (-1dB)	0.7	-40+85	•		٠		•	19	LTSP 25-NP	
25	± 55	C/L	± 1215	25 mA	DC-200 (-1dB)	0.4	-25+85	•		•		•	18	LAH 25-NP	
25	± 62.5	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 25-NP-0000 ⁵⁾	
25	± 62.5	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-250 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 25-NSM- 0000 ⁵⁾	
25	± 62.5	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-250 (-3dB)	1	-40+105	•		•		•	13	HO 25-NP/ SP33-1000 5)	
25	± 62.5	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-250 (-3dB)	1	-40+105	SMD		SMD		•	14	HO 25-NSM/ SP33-1000 ⁵⁾	
25	± 75	O/L	± 1215	4 V	DC-50 (-3dB) ¹⁾	2.4	-25+85	•		•		•	15	HXN 25-P	
2 x 25	2 x ± 75	O/L	± 15	2 x 4 V	DC-50 (+/-3dB) 1)	3.75	-40+85	•		٠			16	HXD 25-P	DM
3 x 25	3 x ± 75	O/L	± 1215	3 x 4 V	DC-10 (-3dB) ¹⁾	4.85	-10+75		•	٠		•	23	HTT 25-P	тм
25	± 80	C/L	+ 5/0	2.5 V±0.625 V	DC-200 (-1dB)	0.7	-40+85	•		•		•	9	LTS 25-NP	
25	± 80	C/L	+ 5/0	2.5V or $V_{\rm ref}$ ±0.625V	DC-200 (-1dB)	0.7	-40+85	•		•		•	10	LTSR 25-NP ⁵⁾	
25	± 85	Fluxgate CAS	+ 5/0	2.5 V±0.625 V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	11	CAS 25-NP	

I_{PN}	= 25	бА	40 A	A l	DRS / F	REL	Ор	en–loop)		CI	losed	–loop	Fluxgate	,
Ţ	Ŧ	gy	.,		514	0 I _{PN} 25°C	-	C	onne	ectior	1		No		S
1 _{PN}	I _P	nolo	U _c	V _{out} I _{out}	BW	$\chi_{A} \equiv T_{A} \equiv$	I _A	Prim	ary	Secor	ndary	or UL	aging	Туре	ture
A	A	Tech	v	@ I _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	UR	Packa		Fea
25	± 85	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	12	CASR 25-NP ⁵⁾	
25	± 85	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-300 (+/-3dB)	0.8	-40+105	•		•		•	8	CKSR 25-NP ⁵⁾	
25	± 75	Fluxgate CAS	+ 5/0	2.5 V±0.625 V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	11	CAS 50-NP	
25	± 75	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	12	CASR 50-NP ⁵⁾	
25	± 75	Fluxgate CAS	+ 5/0	2.5V or $V_{\rm ref} \pm 0.625V$	DC-300 (+/-3dB)	0.8	-40+105	•		•		•	8	CKSR 50-NP 5)	
32	± 80	O/L	+ 5/0	2.5V or $V_{\rm ref}$ ±0.8V	DC-240 (-3dB)	1	-40+105	•		•			20	HLSR 32-P 5)	
32	± 80	O/L	+ 5/0	2.5V or $V_{\rm ref}$ ±0.8V	DC-240 (-3dB)	1	-40+105	SMD		SMD			21	HLSR 32-SM 5)	
32	± 80	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-240 (-3dB)	1	-40+105	•		•			20	HLSR 32-P/SP33 5)	
32	± 80	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-240 (-3dB)	1	-40+105	SMD		SMD			21	HLSR 32-SM/ SP33 5)	
35	± 70	C/L	± 15	35 mA	DC-150 (-1dB)	0.5	-25+70	•		•		•	17	LA 35-NP	
40	± 100	O/L	+ 5/0	2.5V or $V_{\rm ref}$ ±0.8V	DC-240 (-3dB)	1	-40+105	•		•			20	HLSR 40-P ⁵⁾	
40	± 100	O/L	+ 5/0	2.5V or $V_{\rm ref} \pm 0.8V$	DC-240 (-3dB)	1	-40+105	SMD		SMD			21	HLSR 40-SM ⁵⁾	
40	± 100	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-240 (-3dB)	1	-40+105	•		•			20	HLSR 40-P/SP33 5)	
40	± 100	O/L	+ 3.3/0	1.65V or $V_{\rm ref} \pm 0.460V$	DC-240 (-3dB)	1	-40+105	SMD		SMD			21	HLSR 40-SM/ SP33 5)	

(12)

10 (19)

<u>Notes:</u> 1) Small signal bandwidth to avoid excessive core heating at high frequency 5) Ref_{IN} & Ref_{out} modes

8 (11)

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com

22

(21)

20

	I_{PN}	= 50	Α	88 A	L.	DRS /	/ RE	U	Open	–loop			Closed-	-loop	Fluxgate	
			ž				I _{PN} 25°C		С	onn	ectio	n		0		
	$I_{_{\mathrm{PN}}}$	$I_{_{ m P}}$	golor	U _c	V _{out} I _{out}	BW	×@ T _A = :	T _A	Prim	ary	Seco	ndary	or UL	ging N	Туре	tures
	A	A	Techi	V	@ I _{pn}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	UR	Packa		Fea
	50	± 70	C/L	± 1215	50 mA	DC-200 (-1dB)	0.65%)	-40+85		•	•		•	24	LA 55-P	
	50	± 70	C/L	± 1215	50 mA	DC-200 (-1dB)	0.45 6)	-40+85		•	•		•	24	LA 55-P/SP23	
	50	± 70	C/L	± 1215	50 mA	DC-200 (-1dB)	0.65%)	-40+85	•		•		•	25	LA 55-TP	
	50	± 100	C/L	± 1215	25 mA	DC-200 (-1dB)	0.65%)	-40+85		•	•		•	24	LA 55-P/SP1	
	50	± 100	C/L	± 1215	25 mA	DC-200 (-1dB)	0.65%)	-40+85	•		•		•	25	LA 55-TP/SP1	
	50	± 100	C/L	± 1215	25 mA	DC-200 (-1dB)	0.65%)	-40+85	•		•		•	25	LA 55-TP/SP27	
	50	± 100	O/L	± 1215	4 V	DC-10 (-1dB) 1)	3.4	-10+70		٠		•	•	26	HTR 50-SB	SC
	50	± 110	C/L	± 1215	25 mA	DC-200 (-1dB)	0.3	-25+85	•		•		•	27	LAH 50-P	
	50	± 125	O/L	+ 5/0	2.5V or V _{ref} ±0.8V	DC-240 (-3dB)	1	-40+105	•		•			20	HLSR 50-P 5)	
	50	± 125	O/L	+ 5/0	2.5V or V _{ref} ±0.8V	DC-240 (-3dB)	1	-40+105	SMD		SMD			21	HLSR 50-SM ⁵⁾	
ſ	50	± 125	O/L	+ 3.3/0	1.65V or V _{ref} ±0.460V	DC-240 (-3dB)	1	-40+105	•		•			20	HLSR 50-P/ SP33 ⁵⁾	
	50	± 125	O/L	+ 3.3/0	1.65V or V _{ref} ±0.460V	DC-240 (-3dB)	1	-40+105	SMD		SMD			21	HLSR 50-SM/ SP33 5)	
	50	± 150	Fluxgate CAS	+ 5/0	2.5 V±0.625 V	DC-300 (+/-3dB)	0.8	-40+85	•		•		•	11	CAS 50-NP	

I_{PN} :	= 50	Α	88 A		DRS /	/ RI		Open-	–loop			Closed	–loop	Fluxga	te
		~				I _{PN} 5°C		С	onne	ectio	٦		0		
I _{pn}	I _P	Jolog	U _c	V _{out} I _{out}	BW	$X_{A} \otimes T_{A} = 2$	T _A	Prima	ary	Seco	ndary	or UL	ging N	Туре	tures
A	A	Techr	V	@ I _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	UR	Packa		Feat
50	± 150	Fluxgate CAS	+ 5/0	2.5V or V _{ref} ±0.625V	DC-300 (+/-3dB)	0.8	-40+85	٠		•		•	12	CASR 50-NP ⁵⁾	
50	± 150	Fluxgate CAS	+ 5/0	2.5V or V _{ref} ±0.625V	DC-300 (+/-3dB)	0.8	-40+105	•		•		٠	8	CKSR 50-NP 5)	
50	± 150	O/L	± 1215	4 V	DC-50 (-3dB) ¹⁾	2.4	-25+85	•		•		•	15	HXN 50-P	
50	± 150	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	2	-25+85		•		•	٠	28	HAL 50-S	
50	± 150	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	2.5	-10+80		•		•	•	29	HAS 50-S	
50	± 150	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	2.5	-10+80		•	•		•	30	HAS 50-P	
50	± 150	O/L	± 1215	4 V	DC-50 (-3dB) ¹⁾	2.75	-40+80		•	•		•	31	HTB 50-P	
50	± 150	O/L	± 1215	4 V	DC-50 (-3dB) ¹⁾	2.75	-40+80	•		•		•	32	HTB 50-TP	
50	± 150	O/L	+ 1215	U _c /2 V +/- 1.667 V	DC-50 (-3dB) ¹⁾	1.5	-25+85		•	•		•	33	HTB 50-P/SP5	
50	± 150	O/L	+ 1215	U _c /2 V +/- 1.667 V	DC-50 (-3dB) ¹⁾	1.5	-25+85	•		•		•	34	HTB 50-TP/SP5	
50	± 150	O/L	+ 5/0	2.5V or V _{ref} ±0.625V	DC-50 (-3dB) ¹⁾	1.4	-40+85		•		•	٠	35	HASS 50-S ⁵⁾	
3 x 50	3 x ± 150	O/L	± 1215	3 x 4 V	DC-10 (-3dB) ¹⁾	3.75	-10+75		•	•		•	23	HTT 50-P	ТМ
3 x 75	3 x ± 225	O/L	± 1215	3 x 4 V	DC-10 (-3dB) 1)	3.75	-10+75		•	•		•	23	HTT 75-P	ТМ
3 x 88	3 x ± 240	C/L	± 15	3 x 22 mA	DC-200 (-1dB)	1	-40+85		•		•		36	LTT 88-S	ТМ

TM = Triplet Measurement

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com

25 20 (21) 27) 26 24

Notes:

1) Small signal bandwidth to avoid excessive core heating at high frequency

5) Ref_{IN} & Ref_{out} modes

(15)

6) Accuracy calculated with max electrical offset instead of typical electrical offset @ $U_c = \pm 15 \text{ V}$

$I_{\rm DM} = 100 \, {\rm A}$ 200 A

1 _{PN} =	= 100	Α	20	0 A						C	R	S /	RE	Open-loo	ор
		λĒ				5°C	T_{A}		Conn	ectior	ו		°N No		
$I_{_{\mathrm{PN}}}$	$I_{\rm P}$	nolo	U _c	V _{out} I _{out}	BW	X @ J $T_{A} = 2$		Pri	mary	Seco	ondary	or UL	ging	Tupe	itures
А	A	Tech	v	@ I _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	РСВ	Other	UR	Packa	туре	Fea
100	± 200	O/L	± 1215	4 V	DC-10 (-1dB) ¹⁾	3.4	-10+70		•		•	•	26	HTR 100-SB	SC
100	± 300	O/L	± 15	4 V	DC-50 (-3dB) 1)	2.7	-10+80		•		•	•	37	HAC 100-S	
100	± 300	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	1.75	-25+85		•		•	•	28	HAL 100-S	
100	± 300	O/L	± 15	4 V	DC-50 (-3dB) 1)	1.75	-25+85		•		•	•	38	HTA 100-S	
100	± 300	O/L	± 15	4 V	DC-50 (-3dB) 1)	2.5	-10+80		•		•	•	29	HAS 100-S	
100	± 300	O/L	± 15	4 V	DC-50 (-3dB) 1)	2.5	-10+80		•	•		•	30	HAS 100-P	
100	± 300	O/L	± 1215	4 V	DC-50 (-3dB) 1)	2.75	-40+80		•	•		•	31	HTB 100-P	
100	± 300	O/L	± 1215	4 V	DC-50 (-3dB) 1)	2.75	-40+80	•		•		•	32	HTB 100-TP	
100	± 300	O/L	+ 1215	U _c /2 V +/- 1.667 V	DC-50 (-3dB) ¹⁾	1.5	-25+85		•	•		•	33	HTB 100-P/SP5	
100	± 300	O/L	+ 1215	U _c /2 V +/- 1.667 V	DC-50 (-3dB) ¹⁾	1.5	-25+85	•		•		•	34	HTB 100-TP/SP5	
100	± 300	O/L	+ 5/0	2.5V or <i>V</i> _{ref} ±0.625V	DC-50 (-3dB) ¹⁾	1.4	-40+85		•		•	•	35	HASS 100-S ⁵⁾	
3 x 100	3 x ± 300	O/L	± 1215	3 x 4 V	DC-10 (-3dB) 1)	2.7	-10+75		•	•		•	23	HTT 100-P	тм
150	± 450	O/L	± 1215	4 V	DC-50 (-3dB) 1)	2.75	-40+80		•	•		•	31	HTB 150-P	
3 x 150	3 x ± 450	O/L	± 1215	3 x 4 V	DC-10 (-3dB) 1)	2.7	-10+75		•	•		•	23	HTT 150-P	тм
200	± 300	O/L	± 1215	4 V	DC-8 (-1dB) 1)	3.75	-10+70		•		•	•	39	HOP 200-SB	SC
200	± 300	O/L	+ 5/0	U _c /2 V or V _{ref} ±1.25V	DC-50 (-3dB) ¹⁾	1.4	-40+105		•	•		•	41	HTFS 200-P 5)	
200	± 300	O/L	+ 5/0	U _c /2 V or V _{ref} ±1.25V	DC-50 (-3dB) ¹⁾	1.4	-40+105		•	•		•	40	HTFS 200-P/SP2 5)	
200	± 400	O/L	± 1215	4 V	DC-10 (-1dB) 1)	3.4	-10+70		•		•	•	26	HTR 200-SB	SC
200	± 500	O/L	± 1215	4 V	DC-50 (-3dB) 1)	2.75	-40+80		•	•		•	31	HTB 200-P	

<i>I</i> _{PN} =	= 200	Α	30	00 A						[DR	<u>S /</u>	RE	Open-lo	ор
		gy				I _{PN} 5°C	T _A		Conne	ectior	ı		No		S
$I_{\rm PN}$	$I_{\rm P}$	olori	U _c	V _{out} I _{out}	BW	$X_{A} \otimes T_{A} = 2$		Prin	nary	Seco	ndary	t or UL	aging	Tvpe	ature
А	A	Tech	v	@ I _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	Б	Pack	- 51	Fe
200	± 500	O/L	+ 1215	U _c /2 V +/- 1.667 V	DC-50 (-3dB) ¹⁾	1.5	-25+85		•	•		•	33	HTB 200-P/SP5	
200	± 600	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	2.7	-10+80		•		•	•	37	HAC 200-S	
200	± 600	O/L	± 15	4 V	DC-50 (-3dB) 1)	1.75	-25+85		•		•	•	28	HAL 200-S	
200	± 600	O/L	± 15	4 V	DC-50 (-3dB) 1)	1.75	-25+85		•		•	•	38	HTA 200-S	
200	± 600	O/L	± 15	4 V	DC-50 (-3dB) 1)	2.5	-10+80		•		•	•	29	HAS 200-S	
200	± 600	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	2.5	-10+80		•	•		•	30	HAS 200-P	
200	± 600	O/L	± 15	4 V	DC-25 (-3dB) 1)	1.75	-40+105		•		•	•	42	HAT 200-S	
200	± 600	O/L	+ 5/0	2.5V or <i>V</i> _{ref} ±0.625V	DC-50 (-3dB) ¹⁾	1.4	-40+85		•		•	•	35	HASS 200-S ⁵⁾	
300	± 450	O/L	± 1215	4 V	DC-8 (-1dB) 1)	3.75	-10+70		•		•	•	39	HOP 300-SB	SC
300	± 600	O/L	± 1215	4 V	DC-10 (-1dB) 1)	3.4	-10+70		•		•	•	26	HTR 300-SB	SC
300	± 600	O/L	± 1215	4 V	DC-50 (-3dB) 1)	2.75	-40+80		•	•		•	31	HTB 300-P	
300	± 600	O/L	+ 1215	U _c /2 V +/- 1.667 V	DC-50 (-3dB) ¹⁾	1.5	-25+85		•	•		•	33	HTB 300-P/SP5	
300	± 900	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	2.7	-10+80		•		•	•	37	HAC 300-S	
300	± 900	O/L	± 15	4 V	DC-50 (-3dB) 1)	1.75	-25+85		•		•	•	28	HAL 300-S	
300	± 900	O/L	± 15	4 V	DC-50 (-3dB) 1)	1.75	-25+85		•		•	•	38	HTA 300-S	
300	± 900	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	2.5	-10+80		•		•	•	29	HAS 300-S	
300	± 900	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	2.5	-10+80		•	•		•	30	HAS 300-P	
300	± 900	O/L	+ 5/0	2.5V or <i>V</i> _{ref} ±0.625V	DC-50 (-3dB) ¹⁾	1.4	-40+85		•		•	•	35	HASS 300-S ⁵⁾	

39

- - -

(42)

SC = Split Core

TM = Triplet Measurement

_

- -

- <u>Notes:</u> 1) Small signal bandwidth to avoid excessive core heating at high frequency 5) Ref_{IN} & Ref_{out} modes

27

- 100 Δ 150 A

$V_{\rm PN} = 100 \text{ A} \dots 150 \text{ A}$ DRS													U	Closed-loo	р
	$I_{\scriptscriptstyle m D}$	УG	U _c	Vaut	BW	I _{PN} 25°C	T,	(Conne	ction	1		٥Z		(0
^	^	olori	V	I _{out}	۲ ۵,	$\chi_{A} = T_{A}$		Prir	nary	Seco	ndary	or UL	aging	Type	ature:
^	~	Tech	v	@ I _{PN}	NI IZ	%	°C	PCB	Aperture, busbar, other	PCB	Other	5	Pack	iype	Fe
100	± 150	C/L	± 1215	50 mA	DC-200 (-1dB)	0.45 6)	-40+85		•	•		•	24	LA 100-P	
100	± 150	C/L	± 1215	50 mA	DC-200 (-1dB)	0.45%)	-40+85	•		•		•	25	LA 100-TP	
100	± 160	C/L	± 1215	100 mA	DC-200 (-1dB)	0.45 6)	-25+70		•	•		•	24	LA 100-P/ SP13	
100	± 160	C/L	± 1215	50 mA	DC-200 (-1dB)	0.3	-25+85	•		•		•	27	LAH 100-P	
100	± 200	C/L	± 1215	100 mA	DC-100 (-3dB)	0.4	-40+85		•		•	•	43	LF 205-S/SP3	
125	± 200	C/L	± 1215	125 mA	DC-100 (-1dB)	0.8	-40+85		•	•		•	47	LA 125-P	
125	± 200	C/L	± 1215	62.5 mA	DC-100 (-1dB)	0.8	-25+85		•	•		•	47	LA 125-P/SP1	
125	± 200	C/L	± 1215	125 mA	DC-100 (-1dB)	0.8	-25+85		•	•		•	48	LA 125-P/SP3	PC
125	± 300	C/L	± 1215	62.5 mA	DC-100 (-1dB)	0.8	-40+85		•	•		•	47	LA 125-P/SP4	
125	± 200	C/L	± 1215	125 mA	DC-100 (-3dB)	0.41	-40+85	•		•		•	49	LAH 125-P	
130	± 200	C/L	± 1215	130 mA	DC-150 (-1dB)	0.5	-40+85		•	•		Pending	50	LA 130-P	
130	± 200	C/L	± 1215	65 mA	DC-150 (-1dB)	0.5	-40+85		•	•		Pending	50	LA 130-P/SP1	
150	± 212	C/L	± 1215	75 mA	DC-150 (-1dB)	0.5	-40+85		•	•		Pending	51	LA 150-P	

I_{PN}	= 15	50 A	36	6 A	_)R	S	/ RE	U	Closed-loo	р
$I_{_{\rm PN}}$	I _P	gy	U _c	V	BW	∂ I _{PN} 25°C	T _A	(Conne	ction	1		No		S
Δ	Δ	olour	V	V _{out} I _{out}	kH7	$\mathcal{T}_{A} \in \mathcal{T}_{A}$		Prir	nary	Seco	ndary	l or Ul	aging	Type	ature
	A	Tecl		@ I _{PN}		%	°C	PCB	Aperture, busbar, other	PCB	Other	5	Pack	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ч
150	± 212	C/L	± 1215	150 mA	DC-150 (-1dB)	0.5	-40+85		•	•		Pending	51	LA 150-P/SP1	
150	± 212	C/L	± 1215	75 mA	DC-150 (-1dB)	0.5	-40+85	•		•		Pending	52	LA 150-TP	
200	± 300	C/L	± 1215	100 mA	DC-100 (-1dB)	0.65	-40+85		•	•		•	47	LA 200-P	
200	± 300	C/L	± 1215	100 mA	DC-100 (-1dB)	0.65	-25+85		•	•		•	47	LA 200-P/SP4	
200	± 300	C/L	± 1215	100 mA	DC-100 (-1dB)	0.45	-25+85		•		•		53	LAF 200-S	
200	± 420	C/L	± 1215	100 mA	DC-100 (-3dB)	0.4	-40+85		•		•	•	43	LF 205-S	
200	± 420	C/L	± 1215	100 mA	DC-100 (-3dB)	0.4	-40+85		•	•		•	45	LF 205-P	
200	± 420	C/L	± 1215	100 mA	DC-100 (-3dB)	0.4	-40+85		•		•	•	44	LF 205-S/SP1	
200	± 420	C/L	± 1215	100 mA	DC-100 (-3dB)	0.4	-40+85		•	•		•	46	LF 205-P/SP1	
300	± 500	C/L	± 1220	150 mA	DC-100 (-1dB)	0.3	-40+85		•		•	•	54	LF 305-S	
300	± 500	C/L	± 1220	150 mA	DC-100 (-3dB)	0.3	-40+85		•		•	•	55	LF 305-S/ SP10	
300	± 700	C/L	± 15	150 mA	DC-50 (-3dB)	0.4	-40+85		•		•	•	56	LA 306-S	
366	± 950	C/L	± 15	183 mA	DC-100 (-1dB)	0.3	-10+70		•		•		57	LT 305-S	

(53)

PC = Pin Compatible LT 100-P Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com

6) Accuracy calculated with max electrical offset instead of typical electrical offset @ $U_c = \pm 15$ V

Notes:

29

I_{PN}	= 40	0 A	50	A 00			DRS	5/	R	EU	_	Open	–loop	Closed-lo	ор
	_	dy		V		⊉ I _{PN} : 25°C	T _A		Conn	ectior	ı	_	No		S
I _{PN}	I _P	nolo	U _c	I _{out}	BW	$\mathcal{T}_{A} =$		Pri	mary	Seco	ndary	or U	Iging	Tvpe	ature
A	A	Tech	V	@ I _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	UR	Packa	- 7	Fea
400	± 600	O/L	± 1215	4 V	DC-50 (-3dB) 1)	2.75	-40+80		•	•		•	31	HTB 400-P	
400	± 600	O/L	+ 1215	U _c /2 V +/- 1.667 V	DC-50 (-3dB) 1)	1.5	-25+85		•	•		•	33	HTB 400-P/SP5	
400	± 600	O/L	± 1215	4 V	DC-8 (-1dB) 1)	3.75	-10+70		•		•	•	39	HOP 400-SB	SC
400	± 600	O/L	+ 5/0	U _c /2 V or V _{ref} ±1.25V	DC-50 (-3dB) ¹⁾	1.4	-40+105		•	•		•	41	HTFS 400-P 5)	
400	± 600	O/L	+ 5/0	U _c /2 V or V _{ref} ±1.25V	DC-50 (-3dB) ¹⁾	1.4	-40+105		•	•		•	40	HTFS 400-P/ SP2 5)	
400	± 800	O/L	± 1215	4 V	DC-10 (-1dB) 1)	3.4	-10+70		•		•	•	26	HTR 400-SB	SC
400	± 900	O/L	± 15	4 V	DC-50 (-3dB) 1)	2.5	-10+80		•		•	•	29	HAS 400-S	
400	± 900	O/L	± 15	4 V	DC-50 (-3dB) 1)	2.5	-10+80		•	•		•	30	HAS 400-P	
400	± 900	O/L	+ 5/0	2.5V or V _{ref} ±0.625V	DC-50 (-3dB) ¹⁾	1.4	-40+85		•		•	•	35	HASS 400-S ⁵⁾	
400	± 1000	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	1.75	-25+85		•		•	•	28	HAL 400-S	
400	± 1000	O/L	± 15	4 V	DC-50 (-3dB) 1)	1.75	-25+85		٠		•	٠	38	HTA 400-S	
400	± 1200	O/L	± 15	4 V	DC-50 (-3dB) 1)	2.7	-10+80		•		•	٠	37	HAC 400-S	
400	± 1200	O/L	± 15	4 V	DC-25 (-3dB) ¹⁾	1.75	-40+105		•		•	•	42	HAT 400-S	
500	± 750	O/L	± 1215	4 V	DC-8 (-1dB) 1)	3.75	-10+70		•		•	•	39	HOP 500-SB	SC
500	± 800	C/L	± 1524	100 mA	DC-100 (-1dB)	0.3	-40+70		٠		•	٠	58	LF 505-S	
500	± 800	C/L	± 1524	100 mA	DC-100 (-1dB)	0.3	-10+70		•		•	٠	59	LF 505-S/SP15	
500	± 900	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	2.5	-10+80		٠		•	٠	29	HAS 500-S	
500	± 900	O/L	± 15	4 V	DC-50 (-3dB) 1)	2.5	-10+80		•	•		•	30	HAS 500-P	
500	± 900	O/L	+ 5/0	2.5V or V _{ref} ±0.625V	DC-50 (-3dB) ¹⁾	1.4	-40+85		•		•	•	35	HASS 500-S ⁵⁾	
500	± 1000	O/L	± 1215	4 V	DC-10 (-1dB) 1)	2.5	-10+70		•		•	•	60	HOP 500-SB/ SP1	SC

-

1 _{PN} :	= 50	0 A	80	A 00		D	RS	/ F	REL	Open-loc	op				
		Y				D C	Т.		Conn	ection			<u>0</u>		
$I_{_{\mathrm{PN}}}$	$I_{\rm P}$	polor	U _c	V _{out} I _{out}	BW	$\begin{array}{l} X @ I \\ T_{A} = 2! \end{array}$	- A	Prin	nary	Seco	ndary	or UL	ging N	Type	tures
A	A	Techr	v	@ I _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	UR	Packa	туре	Fea
500	± 1000	O/L	± 1215	4 V	DC-10 (-1dB) 1)	3.4	-10+70		٠		•	•	26	HTR 500-SB	sc
500	± 1000	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	1.75	-25+85		٠		•	•	28	HAL 500-S	
500	± 1000	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	1.75	-25+85		٠		•	•	38	HTA 500-S	
500	± 1500	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	2.7	-10+80		٠		•	•	37	HAC 500-S	
500	± 1500	O/L	± 15	4 V	DC-25 (-3dB) 1)	1.75	-40+105		٠		•	•	42	HAT 500-S	
500	± 1500	O/L	± 15	4 V	DC-25 (-3dB) 1)	2.75	-25+85		•		•	•	61	HAX 500-S	
600	± 900	O/L	± 1215	4 V	DC-8 (-1dB) 1)	3.75	-10+70		•		•	•	39	HOP 600-SB	SC
600	± 900	O/L	+ 5/0	$U_{\rm c}/2$ V or $V_{\rm ref}$ ±1.25V	DC-50 (-3dB) 1)	1.4	-40+105		•	•		•	41	HTFS 600-P ⁵⁾	
600	± 900	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	2.5	-10+80		•		•	•	29	HAS 600-S	
600	± 900	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	2.5	-10+80		٠	•		•	30	HAS 600-P	
600	± 900	O/L	+ 5/0	2.5V or V _{ref} ±0.625V	DC-50 (-3dB) ¹⁾	1.4	-40+85		•		•	•	35	HASS 600-S 5)	
600	± 1000	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	1.75	-25+85		٠		•	•	28	HAL 600-S	
600	± 1000	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	1.75	-25+85		٠		•	•	38	HTA 600-S	
600	± 1800	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	2.7	-10+80		•		•	•	37	HAC 600-S	
600	± 1800	O/L	± 15	4 V	DC-25 (-3dB) ¹⁾	1.75	-40+105		٠		•	•	42	HAT 600-S	
800	± 1200	O/L	+ 5/0	$U_{\rm c}/2$ V or $V_{\rm ref}$ ±1.25V	DC-50 (-3dB) ¹⁾	1.4	-40+105		٠	•		•	41	HTFS 800-P ⁵⁾	
800	± 1200	O/L	+ 5/0	U _c /2 V or V _{ref} ±1.25V	DC-50 (-3dB) ¹⁾	1.4	-40+105		•	•		•	40	HTFS 800-P/ SP2 ⁵⁾	
800	± 1600	O/L	± 1215	4 V	DC-10 (-1dB) 1)	2.5	-10+70		•		•	•	60	HOP 800-SB	SC
800	± 1800	O/L	± 15	4 V	DC-50 (-3dB) ¹⁾	2.7	-10+80		٠		•	•	37	HAC 800-S	
800	± 2400	O/L	± 15	4 V	DC-25 (-3dB) ¹⁾	1.75	-40+105		•		•	•	42	HAT 800-S	

SC = Split Core Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com

$I_{\rm PN} = 500 {\rm A}_{\rm AC} \dots 2000 {\rm A}_{\rm AC} $ DRS / REU														
I _{PN}	dg	U _c	V	BW) I _P 25°C	T _A		Connect	ion			No		
Δ	plont	V	$I_{out}^{v_{out}}$	∠⊔ -	$T_{A} = 2$			Primary م		condary	l or UI	aging	Туре	
A _{AC}	Tech	v	@ I _P	KTZ	%	°C	PCB	Aperture, busbar, other	PCB	Other	Б	Pack		
500	Rogowski	Self powered	2.π.Μ. f.I _{PAC} V ^{3) 4)} M.dI _P /dt V ^{2) 4)}	700 (+3dB)	0.654)7)	-10+65		Split core Ø 55 mm Max		1.5 m cable	•	62	RT 500	
500	Rogowski	Self powered	2.π.M. f. I_{PAC} V ^{3) 4)} M.d I_P /dt V ^{2) 4)}	700 (+3dB)	0.80 4) 7)	-10+65		Split core Ø 55 mm Max		3 m cable	•	63	RT 500/SP1	
2000	Rogowski	Self powered	$ \begin{array}{c} 2.\pi.{\sf M}.~{\sf f}.I_{{\sf PAC}}{\sf V}^{3)4)} \\ {\sf M}.{\sf d}I_{\sf p}/{\sf d}t{\sf V}^{2)4)} \end{array} $	500 (+3dB)	0.654)7)	-10+65		Split core Ø 125 mm Max		1.5 m cable	•	64	RT 2000	
2000	Rogowski	Self powered	2.π.Μ. f.I _{PAC} V ³⁾⁴⁾ M.dI _P /dt V ²⁾⁴⁾	430 (+3dB)	0.84)7)	-10+65		Split core Ø 125 mm Max		3 m cable	•	65	RT 2000/SP1	

Features

LEM

□ LEN (1 2000 ((山

62 63 64 65

$I_{\rm PN} = 1000 \, {\rm A}$ 2000 A

-PN												open-i	loop	Closed-loc	νP
		gy		V _{out}		I _{PN} 5°C	T _A	(Conne	ectior	า		No		S
$I_{_{\mathrm{PN}}}$	$I_{\rm P}$	inolog	U _c	I _{out}	BW	X @ $T_A = 2$		Prir	mary	Seco	ndary	or UL	aging	Tvpe	ature:
А	A	Tech	V	@ I _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	П	Pack	- 7	Fea
1000	± 1000	O/L	± 15	4 V	DC-50 (-3dB) 1)	1.75	-25+85		•		•	٠	38	HTA 1000-S	
1000	± 1500	C/L	± 1524	200 mA	DC-150 (-1dB)	0.3	-40+85		•		•	•	66	LF 1005-S	
1000	± 1500	C/L	± 1524	200 mA	DC-150 (-1dB)	0.3	-10+85		•		•	•	67	LF 1005-S/SP22	
1000	± 2000	O/L	± 1215	4 V	DC-10 (-1dB) 1)	2.5	-10+70		•		•	•	60	HOP 1000-SB	SC
1000	± 2500	O/L	± 15	4 V	DC-25 (-3dB) 1)	1.75	-40+105		•		•	•	42	HAT 1000-S	
1000	± 3000	O/L	± 15	4 V	DC-25 (-3dB) 1)	2.75	-25+85		•		•	•	61	HAX 1000-S	
1200	± 2500	O/L	± 15	4 V	DC-25 (-3dB) 1)	1.75	-40+105		•		•	•	42	HAT 1200-S	
1500	± 2500	O/L	± 15	4 V	DC-25 (-3dB) 1)	1.75	-40+105		•		•	•	42	HAT 1500-S	
1500	± 3000	O/L	± 1215	4 V	DC-10 (-1dB) 1)	2.5	-10+70		•		•	•	60	HOP 1500-SB	SC
1500	± 4500	O/L	± 15	4 V	DC-25 (-3dB) 1)	2.75	-25+85		•		•	•	61	HAX 1500-S	
2000	± 3000	O/L	± 1215	4 V	DC-10 (-1dB) 1)	2.5	-10+70		•		•	•	60	HOP 2000-SB	SC
2000	± 3000	O/L	± 1215	4 V	DC-4 (-1dB) 1)	2.5	-10+70		•		•	•	68	HOP 2000-SB/SP1	SC
2000	± 3000	C/L	± 1524	400 mA	DC-100 (-1dB)	0.2	-40+85		•		•	•	69	LF 2005-S	

(38)

(42)

I _{PN} =	= 200	Closed-	loop	Fluxgate											
Ţ	Ţ	26	11		BW	O O	T	(Conn	ectio	n		0		
PN	⁴ P	golot	υ _c	V _{out} I _{out}	511	X @ I T _A = 2!	' A	Prir	mary	Seco	ndary	or UL	ging l	_	tures
A	A	echr	V	@ I _{PN}	kHz	%	ာ	ņ	ture, bar,	a m	er	UR	acka	Туре	Feat
						~		P P	Aper bus	PO	Oth		تە		
2000	± 5500	O/L	± 15	4 V	DC-25 (-3dB) 1)	2.75	-25+85		•		•	•	61	HAX 2000-S	
2000	± 5500	O/L	± 15	4 V	DC- 25(-1dB) 1)	2.75	-10+80		٠		•	_	70	HAXC 2000-S	
2500	± 5500	O/L	± 15	4 V	DC-25 (-3dB) 1)	2.75	-25+85		•		•	•	61	HAX 2500-S	
4000	± 4000	O/L	± 15	10 V	DC-3 (-3dB) 1)	2	-25+85		٠		•	_	71	HAZ 4000-SB	
4000	± 4000	O/L	± 15	20 mA	DC-3 (-3dB) 1)	2	-25+85		٠		•		71	HAZ 4000-SBI	
4000	± 4000	O/L	± 15	4 mA @ -I _{PN} 20 mA @ +I _{PN}	DC-3 (-3dB) 1)	2	-25+85		•		•		71	HAZ 4000-SBI/ SP1	
4000	± 6000	C/L	± 24	800 mA	DC-100 (-1dB)	0.3	-25+70		٠		•		72	LT 4000-S	
4000	± 6000	C/L	± 24	800 mA	DC-100 (-1dB)	0.3	-25+70		•		•		73	LT 4000-T	
4000	± 12000	Fluxgate IT	± 24	1600 mA	DC- 50(1dB) ⁸⁾	0.06 9)	-40+70		•		•		74	ITL 4000-S	
6000	± 6000	O/L	± 15	10 V	DC-3 (-3dB) 1)	2	-25+85		•		•		71	HAZ 6000-SB	
6000	± 6000	O/L	± 15	20 mA	DC-3 (-3dB) 1)	2	-25+85		٠		•		71	HAZ 6000-SBI	
6000	± 6000	O/L	± 15	4 mA @ -I _{PN} 20 mA @ +I _{PN}	DC-3 (-3dB) 1)	2	-25+85		•		•		71	HAZ 6000-SBI/ SP1	
10000	± 10000	O/L	± 15	10 V	DC-3 (-3dB) 1)	2	-25+85		•		•		71	HAZ 10000-SB	
10000	± 10000	O/L	± 15	20 mA	DC-3 (-3dB) 1)	2	-25+85		٠		•		71	HAZ 10000-SBI	
10000	± 10000	O/L	± 15	4 mA @ -I _{PN} 20 mA @ +I _{PN}	DC-3 (-3dB) 1)	2	-25+85		•		•		71	HAZ 10000-SBI/ SP1	
10000	± 15000	C/L	± 4860	1 A	DC-100 (-1dB)	0.3	-25+70		٠		•		75	LT 10000-S	
12000	± 12000	O/L	± 15	10 V	DC-3 (-3dB) 1)	2	-25+85		٠		•		71	HAZ 12000-SB	
12000	± 12000	O/L	± 15	20 mA	DC-3 (-3dB) 1)	2	-25+85		•		•		71	HAZ 12000-SBI	
12000	± 12000	O/L	± 15	4 mA @ -I _{PN} 20 mA @ +I _{PN}	DC-3 (-3dB) 1)	2	-25+85		•		•		71	HAZ 12000-SBI/ SP1	
14000	± 14000	O/L	± 15	10 V	DC-3 (-3dB) 1)	2	-25+85		•		•		71	HAZ 14000-SB	
14000	± 14000	O/L	± 15	20 mA	DC-3 (-3dB) 1)	2	-25+85		٠		•		71	HAZ 14000-SBI	
14000	± 14000	O/L	± 15	4 mA @ -I _{PN} 20 mA @ +I _{PN}	DC-3 (-3dB) 1)	2	-25+85		•		•		71	HAZ 14000-SBI/ SP1	
20000	± 20000	O/L	± 15	10 V	DC-3 (-3dB) 1)	2	-25+85		٠		•		71	HAZ 20000-SB	
20000	± 20000	O/L	± 15	20 mA	DC-3 (-3dB) 1)	2	-25+85		•		•		71	HAZ 20000-SBI	
20000	± 20000	O/L	± 15	4 mA @ -I _{PN} 20 mA @ +I _{PN}	DC-3 (-3dB) ¹⁾	2	-25+85		•		•		71	HAZ 20000-SBI/ SP1	

SC = Split Core Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com

Notes:

- 1) Small signal bandwidth to avoid
- excessive core heating at high frequency
- 2) Instantaneous 3) For sinusoidal wave (f in Hz)
- 4) M= Transfer ratio 0.064 μ H (+/- 5%): RT models are provided with up to 5 % manufacturing tolerance
- 7) Max positioning error
- 8) 40 A_{RMS} 9) X_{G} = Global accuracy
 - 32

Current Transducers - Minisens

DRS / REU

Minisens – FHS model From 2 to 100 Amps

To help your innovation, we make ourselves small.

Traditional measurement systems are not used in markets such as low power domestic electrical products and air conditioning systems for a number of reasons. If isolation is needed in a shunt-based system, an optocoupler is also necessary, adding to the cost and bulk. For current measurements over approximately 10A, the losses in the shunt become significant resulting in an unacceptable temperature rise. At lower current levels, the shunt will need to have a high resistance to ensure that its output is not too small. Generally, an amplifier may also be needed.

Until today, these factors have been major limitations for the use of current measurement in smaller electrical systems. However, there is a growing demand for current measurement in such systems, as inverter control of electric motors becomes more popular, for greater control of speed and position, and improved energy efficiency. Fortunately, new techniques allow producing smaller and lower-cost transducers that can make current measurement a reality in such systems.

The trend in power electronics is not different to that in other electronics fields: a greater degree of integration coupled with a lower component count.

Minisens, FHS integrated LEM current transducer for AC and DC isolated current measurement up to 100 kHz, shows the way. This new product combines all the necessary electronics with a Hall-effect sensor and magnetic concentrators in a single eight-pin, surface-mount package (Fig. 1): A step towards miniaturization and manufacturing cost reduction (as part of a standard PCB assembly process).

It can be isolated simply by mounting it on a printed circuit board on the opposite side to the track carrying the current to be measured, does not suffer from losses and can make use of PCB design techniques to adjust sensitivity and therefore remove the need for an amplifier.

Working principle:

Fig. 1: Minisens - FHS model

Minisens/FHS converts the magnetic field of a sensed current into a voltage output. This 'primary' current flows in a cable or PCB track near the IC and is electrically isolated from it. Hall effect devices integrated in the IC are used to measure the magnetic field, this field being focused in the region of the Hall cells by magnetic concentrators placed on top of the IC.

The IC sensitivity to the magnetic field of the primary current is 600 mV/mT max.

This is the basic working principle of the Hall effect open-loop technology, but all incorporated into a single small IC package.

The current sensed can be either positive or negative. The polarity of the magnetic field is detected to generate either a positive or negative voltage output around a voltage reference defined as the initial offset at no field. The standard initial offset is 2.5 V (internal reference). The user can specify an external reference between +2 and +2.8 V.

It is manufactured in a standard CMOS process and assembled in a SO8-IC package.

Design considerations:

The most common way to use Minisens is to locate it over a PCB track that is carrying the current that needs to be measured. To optimise the function of the transducer, some simple rules need to be applied to the track dimensions. By varying the PCB and track configuration, it is possible to measure currents ranging from 2 to 100 Amps. One possible configuration places the IC directly over a single PCB track (Fig. 2).

In this configuration, isolation is provided by the distance between the pins of the transducer and the track, and currents in the range from 2 to 20 A can be measured.

Insulation can be improved by placing the transducer on the opposite side of the board, but still directly over the line of the track. The thickness of the board and the track itself will both affect the sensitivity, as they directly influence the distance between the sensing elements (located into the IC) and the position of the primary conductor. Sensitivity is also affected by the width of

Fig. 2: One possible PCB design; The track is located underneath the Minisens

Fig.3: Sensitivity (mV/A) versus track width and distance between the track and the sensing elements.

The maximum current that can be safely applied continuously is determined by the temperature rise of the track and the ambient temperature. The use of a track with varying width gives the best combination of sensitivity and track temperature rise. To maintain temperature levels, the width, thickness and shape of the track are very important. Minisens' maximum operating temperature is 125°C.

For low currents (under 10A), it is advisable to make several turns with the primary track or to use a narrow track to increase the magnetic field generated by the primary current.

Figs. 4 and 5: Possible "multi-turn" designs.

34

As with a single track, it is better to have wider tracks around the Minisens than under it (to reduce temperature rise) (Figs. 4 and 5).

This configuration is also possible on the opposite side of the PCB to the Minisens providing then a higher insulation configuration (Fig. 5) as creepage and clearance distances are improved (longer).

The sensitivity can be increased further by other techniques, such as using a "jumper" (wire) over the Minisens to create a loop with the PCB track, or multiple turns can be implemented in different PCB layers. Larger currents can be measured by positioning the transducer farther from the primary conductor or by using a wider PCB track or busbar. Designs are unlimited, under PCB designer's control, and can lead to needs for insulation, nominal current to measure, sensitivity optimisation, etc. This is full design flexibility.

Special features for added value:

Two outputs are available: one filtered, to limit the noise bandwidth, and one unfiltered which has a response time under 3μ s, for current short-circuit detection (IGBT protection) or threshold detection.

Minisens operates from a +5 V power supply. To reduce power consumption in sensitive applications, it can be switched to a standby mode by means of an external signal to reduce the consumption from 20 milliamps to 20 microamps.

In addition, a special care to the adjacent perturbing (stray) fields has to be brought.

Fig. 7:

S

These mechanical parameters must be closely controlled in the production process. Alternatively, in-circuit calibration of the Minisens or the DSP can be used to avoid most of these errors.

Evaluate Minisens in your application: Evaluation kits

Several PCBs (Figs. 6 and 7) have been developed to demonstrate Minisens as a current transducer in different applications, and to validate simulations which were made to predict the transducer sensitivity: These are available on request for application testing.

LEM design guides are also available to orientate and advise PCB designers in the building of their PCBs when using Minisens, in order to optimise the use of the transducer (on request).

Two typical examples will show the advantages offered by Minisens in today's applications:

Washing Machines:

Designers of modern washing machines are looking for more accurate control of the electric motor, to save energy by improving the efficiency of the system and

Fig. 6: Minisens kits with low isolation (0.4 mm clearance/creepage)

	Kit 4	Kit 6	Kit 7
			•
	1 turn	With jumper	Multi turns
I _{PN} (A) @ Tamb = 85° C (Tpcb max 115° C)	16	10	5
I _{PM} (A) @ V _{out} = 2 V	30	10	11
Sensitivity (mV/A) @ 600 mV/mT	67.2	206.2	186.1

Minisens kits with high isolation	Kit 5	Kit 9	Kit 8
(8 mm clearance/ creepage)	• • •	D 0	
	1 turn	1 turn	Multi turns
_{PN} (A) @ Tamb = 85° C Грсb max 115° C)	16	30	5
_{PM} (A) @ V _{out} = 2 V	55	78	16
ensitivity (mV/A) @ 600 mV/mT	36.3	25.8	125.6

0. P KIT 6-11

protect the environment by adjusting washing time and water usage. They are also aiming to improve the performance of the machine, in terms of out-of balance detection, vibration reduction, different programs for different types of clothes and noise reduction. An inverter-based system offers this finer control, allowing the designer to have both new and improved functions. Such a system needs accurate measurement of motor current, and two Minisens transducers can be mounted directly onto the control PCB to provide the necessary measurements.

Air-conditioning units:

Traditionally, air-conditioning units have relied on simple on/off control of the motor. However, this has resulted in a wide variation of temperature and has required a relatively large motor, which is either off or running at full power – resulting in a lot of noise. Modern air conditioners use inverter control, starting the motor at full speed to adjust the temperature coarsely and then reducing the speed and oscillating closely around the target temperature (Fig.9).

Such a system produces less noise, requires less power to maintain the target temperature, and can use a smaller motor. Japanese air-conditioner manufacturers have already moved to this method and those in the United States, China and Europe are now following.

Low cost UPSs as well as battery chargers can benefit from Minisens to ensure the current control as well as the fault protection (current overload detection) or to detect current presence.

AVAN AND

This fault protection function has to be fulfilled for electrical shutters, door openers and other equipment of that nature.

Fig. 8: Motor control in washing machines

Fig. 9: Inverter control vs. conventional control

Picture provided by courtesy of PsiControl mechatronics

$I_{\scriptscriptstyle PN}$	Image: PN = 2 A DRS / REU CT PRIME													
Signal conditioning type	I _{PN} A	Technology	U _c V	<i>BW</i> kHz	X@ I _{PN} T _A = 25 °C %	T _A ℃	Aperture mm	Split Core	DIN Rail	Output	UR or UL	Packaging No	Туре	Features
sno	50	СТ	Self powered	0.050.06	1	-20+70	ø 8	•		0-16mA		155	TT 50-SD	
AC instantane	100	СТ	Self powered	0.050.06	1	-20+70	ø 16	•		0-33mA	•	156	TT 100-SD	
	5, 10, 20, 50, 100, 150	СТ	Self powered	0.050.06	1.5 ^{a)}	-20+60	ø 16	•		0-5/10 V _{DC}		157	AT 5150 B5/10	RMS (average) output
	5, 10, 20, 50, 100, 150	ст	Loop powered +2030 V _{pc}	0.050.06	1.5 ª)	-20+60	ø 16	•		4-20 mA _{DC}	•	158	AT 5150 B420L	RMS (average) output
	10, 20, 50, 100, 150, 200	СТ	Self powered	0.050.06	1	-20+50	21.7 x 21.7	•	0	0-10 V _{DC}		159	AK 50200 B10	RMS (average) output
	2, 5, 10, 20, 50, 100, 150, 200	СТ	Loop powered +24 V _{pc}	0.020.1	1	-20+50	21.7 x 21.7	•	0	4-20 mA _{DC}		159	AK 5200 B420L	RMS (average) output
AC RMS	10, 20, 50, 100, 150, 200	СТ	Self powered	0.050.06	1	-20+50	ø 19		0	0-10 V _{DC}		161	AK 50200 C10	RMS (average) output
	2, 5, 10, 20, 50, 100, 150, 200	СТ	Loop powered +24 V _{DC}	0.020.1	1	-20+50	ø 19		0	4-20 mA _{DC}		161	AK 5200 C420L	RMS (average) output
	10, 25, 50, 75, 100, 150, 200, 300, 400	PRiME	+24 V _{DC}	0.032	1 a)	-20+60	ø 18.5	•	•	0-5/10 V _{DC}		162	AP 50400 B5/10	RMS output (average) 0-5/10 V _{DC} switch selectable voltage output Switch selectable measuring ranges
	10, 25, 50, 75, 100, 150, 200, 300, 400	PRiME	Loop powered +1224 V _{DC}	0.032	1 a)	-20+60	ø 18.5	•	•	4-20 mA _{DC}	•	163	AP 50400 B420L	RMS output (average) Switch selectable measuring ranges
	2, 5, 10, 20, 50, 100, 150, 200	СТ	Loop powered +24 V _{DC}	0.010.4	1	-20+50	21.7 x 21.7	•	0	4-20 mA _{DC}		160	AKR 5200 B420L	True RMS output Switch selectable measuring ranges
	2, 5, 10, 20, 50, 100, 150, 200	СТ	Loop powered +24 V _{DC}	0.010.4	1	-20+50	ø 19		0	4-20 mA _{DC}		161	AKR 5200 C420L	True RMS output Switch selectable measuring ranges
AC True	10, 25, 50, 75, 100, 150, 200, 300, 400	PRIME	+24 V _{DC}	0.036	1 a)	-20+60	ø 18.5	•	•	0-5/10 V _{DC}		162	APR 50400 B5/10	True RMS output (average) 0-5/10 V _{DC} switch selectable voltage output Switch selectable measuring ranges
RIVIS	10, 25, 50, 75, 100, 150, 200, 300, 400	PRiME	Loop powered +1224 V _{DC}	0.036	1 a)	-20+60	ø 18.5	•	•	4-20 mA _{DC}		163	APR 50400 B420L	True RMS output Switch selectable measuring ranges
	375, 500, 750	СТ	Loop powered +24 V _{DC}	0.010.4	1	-20+50	ø 76			4-20 mA _{DC}		164	AKR 750 C420L J	True RMS output Switch selectable measuring ranges
	1000, 1333, 2000	СТ	Loop powered +24 V _{DC}	0.010.4	1	-20+50	ø 76			4-20 mA _{DC}		164	AKR 2000 C420L J	True RMS output Switch selectable measuring ranges

<u>I_{PN}</u> = 5 A ... 20000 A

Signal conditioning type	I _{PN}	Technology	U _c V	<i>BW</i> kHz	X @ I _{PN} T _A = 25 °C %	T _A °C	Aperture mm	Split Core	DIN Rail	Output	UR or UL	Packaging No	Туре	Features
	100, 200, 300, 400, 500, 600, 1000	O/L	+2050 V _{DC}	DC & 0.026	1 a)	-40+70	ø 32			0-5/10 V _{DC}		165	DHR 1001000 C5/10	UL from 100 to 400 A True RMS output
	100, 200, 300, 400, 500, 600, 1000	O/L	+2050 V _{DC}	DC & 0.026	1 a)	-40+70	ø 32			4-20 mA _{DC}		165	DHR 1001000 C420	UL from 100 to 400 A True RMS output
DC &	500, 800, 1000, 1500, 2000	O/L	+2050 V _{DC}	DC & 0.026	1 a)	-40+70	104 x 40	•		0-5/10 V _{DC}		166	AHR 5002000 B5/10	True RMS output
AC True RMS	500, 800, 1000, 1500, 2000	O/L	+2050 V _{DC}	DC & 0.026	1 a)	-40+70	104 x 40	•		4-20 mA _{DC}		166	AHR 5002000 B420	True RMS output
	4k, 6k, 10k, 12k, 14k, 20k	O/L	+/- 15 V _{DC}	DC & 0.0153	1 a)	-25+85	162 x 42			0-10 V _{DC}		71	HAZ 400020000 -SRU	True RMS output
	4k, 6k, 10k, 12k, 14k, 20k	O/L	+/- 15 V _{DC}	DC & 0.0153	1 a)	-25+85	162 x 42			0-20 mA _{DC}		71	HAZ 400020000 -SRI	True RMS output
	4k, 6k, 10k, 12k, 14k, 20k	O/L	+/- 15 V _{DC}	DC & 0.0153	1 ^{a)}	-25+85	162 x 42			4-20 mA _{DC}		71	HAZ 400020000 -SRI/SP1	True RMS output
	50, 75, 100, 150, 200, 225, 300, 400	O/L	+2045 V _{DC}	DC	2	-20+50	21.7 x 21.7	•	0	0-5/10 V _{DC}		167	DK 100400 B5/10	Magnitude only - Not the direction Switch selectable measuring ranges Unipolar voltage output
DC	50, 75, 100, 150, 200, 225, 300, 400	O/L	+2045 V _{DC}	DC	2	-20+50	21.7 x 21.7	•	0	4-20 mA _{DC}		167	DK 100400 B420	Magnitude only - Not the direction - 4 mA at Ip=0 Switch selectable measuring ranges Unipolar current output
	50, 75, 100, 150, 200, 225, 300, 400	O/L	+2045 V _{DC}	DC	2	-20+50	21.7 x 21.7	•	0	0-20 mA _{DC}		167	DK 100400 B020	Magnitude only - Not the direction - 0 mA at Ip=0 Switch selectable measuring ranges Unipolar current output
DC Bipolar	50, 75, 100, 150, 200, 225, 300, 400	O/L	+2045 V _{DC}	DC	1 ^{b)}	-20+50	21.7 x 21.7	•	0	4-20 mA _{DC}		167	DK 100400 B420 B	DC bipolar measurement (magnitude and direction) 12 mA at Ip = 0
	5, 10, 20, 50, 75, 100	O/L	+2045 V _{DC}	DC	1	-20+50	ø 19.1		0	4-20 mA _{DC}		168	DK 20100 C420 B	DC bipolar measurement (magnitude and direction) 12 mA at Ip = 0
	500, 800, 1000, 1500,	O/L	Loop powered +2030 V _{pc}	DC	1 a)	-10+70	104 x 40	•		4-20 mA		169	DH 5002000 B420L B	DC bipolar measurement (magnitude and direction)

(71)

(163) (162)

(157) (164) (155) (156) (158) a) Excluding offset b) 2% for 400 A model (168

DRS / REU

38

o with adapter ▲ UL listed

recognized

Notes:

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com

(165)

(166) (169)

DRS / REU Open-loop

$V_{\rm PN} = 10 \ {\rm V} \dots 2500 \ {\rm V}$

$V_{\rm PN} = 10$	V 250)0 \	/				DRS	S / RE	U	Closed-loop
Ι _{ΡΝ} (V _{ΡΝ})	I _P (V _P)	hnology	U _c V	$I_{_{ m out}} @ I_{_{ m PN}}$	BW kHz	X _G T _A = 25 °C	T _A	R or UL	kaging No	Туре
mA	mA	Tec				$\% @ I_{_{\sf PN}}$ with max offset taken	°C	⊃	Pach	
10 (10 to 500 V)	± 14 (700 V)	C/L	± 1215	25 mA	Note c)	0.9	0+70	•	76	LV 25-P d)
10 (100 to 2500 V)	± 20 (5000 V)	C/L	± 15	50 mA	Note c)	0.7	0+70		77	LV 100 e)

DRS / REU

V_{PN}	, = ;	50 V	400 \	/				IDT		Closed-lo	op	Fluxgate
±V _{PN}	±V _P	nology	U _c	V _{out} I _{out}	BW	X _G T _A = 25 °C	T _A	or UL	aging No	Туре	nection imary	nection ondary
V	V	Tech	V	@ V _{pn}	KHZ	% @ V _{PN} with max offset taken	°C	UR	Packa		Con	Con seo
50	75	Insulating digital technology	± 1524	50 mA	DC-14 (-3dB)	0.5	-40+85		78	DVL 50	2 x M5	3 x M5 + Faston
125	188	Insulating digital technology	± 1524	50 mA	DC-14 (-3dB)	0.5	-40+85		78	DVL 125	2 x M5	3 x M5 + Faston
150	225	Insulating digital technology	± 1524	50 mA	DC-14 (-3dB)	0.5	-40+85		78	DVL 150	2 x M5	3 x M5 + Faston
250	375	Insulating digital technology	± 1524	50 mA	DC-14 (-3dB)	0.5	-40+85		78	DVL 250	2 x M5	3 x M5 + Faston
200	300	C/L	± 1215	25 mA	Note c)	0.9	-25+70	0	79	LV 25-200	Faston	Faston
400	600	C/L	± 1215	25 mA	Note c)	0.9	-25+70	0	79	LV 25-400	Faston	Faston
140	200	Fluxgate "C"	± 15	10 V/200 V	DC-300 (-1dB)	0.2 @ Vp	-40+85		80	CV 3-200	2 x M5	4 x M5
350	500	Fluxgate "C"	± 15	10 V/500 V	DC-300 (-1dB)	0.2 @ Vp	-40+85		80	CV 3-500	2 x M5	4 x M5

$V_{\sf PN}$:	= 50	<u>)0 V 4</u>	200	V	DRS / I	REU	ID	т		Closed-loop		Fluxgate
±V _{PN} V	±V _P V	Technology	U _c V	V _{out} I _{out} @ V _{PN}	BW kHz	X_{G} $T_{A} = 25 \text{ °C}$ % @ V_{PN} with max offset taken	T _A °C	UR or UL	Packaging No	Туре	Connection primary	Connection secondary
500	750	Insulating digital technology	± 1524	50 mA	DC-14 (-3dB)	0.5	-40+85		78	DVL 500	2 x M5	3 x M5 + Faston
750	1125	Insulating digital technology	± 1524	50 mA	DC-14 (-3dB)	0.5	-40+85		78	DVL 750	2 x M5	3 x M5 + Faston
1000	1500	Insulating digital technology	± 1524	50 mA	DC-14 (-3dB)	0.5	-40+85		78	DVL 1000	2 x M5	3 x M5 + Faston
1000	1500	Insulating digital technology	± 1524	50 mA	DC-12 (3dB)	0.3	-40+85		81	DV 1000	Cable	Cable
1200	1800	Insulating digital technology	± 1524	50 mA	DC-12 (3dB)	0.3	-40+85		82	DV 1200/SP2	Cable	M5 + Faston
1500	2250	Insulating digital technology	± 1524	50 mA	DC-14 (-3dB)	0.5	-40+85		78	DVL 1500	2 x M5	3 x M5 + Faston
1500	2250	Insulating digital technology	± 1524	50 mA	DC-12 (3dB)	0.3	-40+85		82	DV 1500	Cable	M5 + Faston
2000	3000	Insulating digital technology	± 1524	50 mA	DC-14 (-3dB)	0.5	-40+85		78	DVL 2000	2 x M5	3 x M5 + Faston
2000	3000	Insulating digital technology	± 1524	50 mA	DC-12 (3dB)	0.3	-40+85		81	DV 2000	Cable	Cable
2000	3000	Insulating digital technology	± 1524	50 mA	DC-12 (3dB)	0.3	-40+85		82	DV 2000/SP1	Cable	M5 + Faston
2000	3000	Insulating digital technology	± 1524	50 mA	DC-12 (3dB)	0.3	-40+85		83	DV 2000/SP2	M5	M5
2800	4200	Insulating digital technology	± 1524	50 mA	DC-12 (3dB)	0.3	-40+85		84	DV 2800/SP4	M5	M5
3000	4500	Insulating digital technology	± 1524	50 mA	DC-12 (3dB)	0.35	-40+85		84	DV 3000/SP1	M5	M5
4200	6000	Insulating digital technology	± 1524	50 mA	DC-12 (3dB)	0.3	-40+85		81	DV 4200/SP3	Cable	Cable
4200	6000	Insulating digital technology	± 1524	50 mA	DC-12 (3dB)	0.3	-40+85		84	DV 4200/SP4	M5	M5
600	900	C/L	± 1215	25 mA	Note c)	0.9	-25+70		79	LV 25-600	Faston	Faston
800	1200	C/L	± 1215	25 mA	Note c)	0.9	-25+70		79	LV 25-800	Faston	Faston
1000	1500	C/L	± 1215	25 mA	Note c)	0.9	-25+70		79	LV 25-1000	Faston	Faston
1200	1800	C/L	± 1215	25 mA	Note c)	0.9	-25+70	•	79	LV 25-1200	Faston	Faston
2500	3750	C/L	± 15	50 mA	Note c)	0.9	0+70		85	LV 100-2500	2 x M5	3 x M5 + Faston
3000	4500	C/L	± 15	50 mA	Note c)	0.9	0+70		85	LV 100-3000	2 x M5	3 x M5 + Faston
3500	4500	C/L	± 15	50 mA	Note c)	0.9	0+70		85	LV 100-3500	2 x M5	3 x M5 + Faston
4000	6000	C/L	± 15	50 mA	Note c)	0.9	0+70		85	LV 100-4000	2 x M5	3 x M5 + Faston
700	1000	Fluxgate "C"	± 15	10 V/1000 V	DC-500 (-1dB @ 50 % V _{PN})	0.2 @ V _P	-40+85		80	CV 3-1000	2 x M5	4 x M5
840	1200	Fluxgate "C"	± 15	10 V/1200 V	DC-800 (-1dB @ 40% V _{PN})	0.2 @ V _P	-40+85		80	CV 3-1200	2 x M5	4 x M5
1000	1500	Fluxgate "C"	± 15	10 V/1500 V	DC-800 (-1dB @ 33% V _{PN})	0.2 @ V _P	-40+85		80	CV 3-1500	2 x M5	4 x M5
1400	2000	Fluxgate "C"	± 15	10 V/2000 V	DC-300 (-1dB @ 25% V)	0.2 @ V _P	-40+85		80	CV 3-2000	2 x M5	4 x M5

Notes:

c) See response time in individual data sheet

d) The primary and secondary connections of this transducer are done on PCB

e) Mechanical Mounting

O) Recognition pending

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com

DRS / REU

(79)

Wi-LEM Wireless Local Energy Meter

DRS / REU

Cut Installation Costs

Easy Commissioning

Applications:

- Establish the breakdown of energy use (where does it all go?)
- Allocate energy wastes to users
- Determine efficiency of equipment
- Audit before & after energy use for retrofit projects
- Manage the load profile (peak demand)
- Maintenance and Entreprise Asset Management

* an additional intrinsic safety barrier module is needed

Mesh Gate:

Mesh Node:

data transmission module

Measurement ranges:

Measurement values:

Current (A) Voltage (V) Active Energy (kWh) Reactive Energy (kV Apparent Energy (k Frequency

Wi-Pulse: meters like water or gas*

WI-LEM COMPONENTS

Energy Meter Node (EMN):

Single or three phase energy meter with embedded wireless

- Current from 20 to 2000 A - Voltage from 90 to 500 VAC

	(5	to 30	lı minu	nterv tes Co	al Ba onfigu	sed \ irable	/alue Read	s ling Ir	nterva	ls)	C	umm Val	ulate ues	∌d
		L1			L2			L3		CI IM	14	1.2	12	SIIM
	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	30111	-	LZ	LS	3011
)														
/arh)														
VA)														

A transducer that counts and transmits pulses coming from

Temperature and Humidity transducer

Two inputs thermistors based temperature sensors

A gateway managing the mesh network (up to 200 Nodes). It provides data through serial interface to a PC or RTU

Repeater linking various Nodes. They enable wireless communication throughout a large installation

$I_{PN} = 0.4 \text{ A} \dots 400 \text{ A}$

1 _{PN}	= ().4	ΙΑ.	40	00 A						T	rr -	On	-B	oard	Closed-loop
		gy		V _{out}		/ _{PN} 5 °C	1 _{PN} 5 °C	T _A		Connec	ction	I		No		
I _{PN}	I _P	nolo	U _c	I _{out}	BW	X @ $T_A = 2$	$\chi_{G}^{A_{G}}$			Primary	Se	condary	or UL	aging	Type	Features
A	A	Tech	V	@ / _{PN}	kHz	%	%	°C	PCB	Aperture, busbar, other	PCB	Other	Ч	Pack	iype	T Catalos
0.4	± 0.85	C/L	± 15	30 mA	DC-150 (-1dB)	0.5	0.8	-40+85	•		•		•	1	LA 25-NP/SP38	
1.5	± 2.2	C/L	± 15	24 mA	DC-150 (-1dB)	0.5	0.9	-40+85	•		•		•	1	LA 25-NP/SP34	
2	± 2.5	C/L	± 15	40 mA	DC-150 (-1dB)	0.5	0.7	-40+85	•		•		•	1	LA 25-NP/SP39	
5	± 7	C/L	± 15	25 mA	DC-150 (-1dB)	0.5	0.9	-40+85	•		•		•	22	LA 25-NP/SP25	
6	± 9	C/L	± 15	24 mA	DC-150 (-1dB)	0.5	0.9	-40+85	•		•		•	22	LA 25-NP/SP25	
8	± 12	C/L	± 15	24 mA	DC-150 (-1dB)	0.5	0.9	-40+85	•		•		•	22	LA 25-NP/SP25	
12	± 18	C/L	± 15	24 mA	DC-150 (-1dB)	0.5	0.9	-40+85	•		•		•	22	LA 25-NP/SP25	
25	± 36	C/L	± 15	25 mA	DC-150 (-1dB)	0.5	0.9	-40+85	•		•		•	22	LA 25-NP/SP25	
100	± 200	C/L	± 1215	100 mA	DC-100 (-3dB)	0.4	0.6	-40+85		Ø 15.5 mm		Molex	•	44	LF 205-S/SP5	Molex Minifit 5566
130	± 1000	C/L	± 24	65 mA	DC-50 (-3dB)	0.5	1.45	-40+85		Aperture 13x30 mm		Molex	•	108	LAC 300-S/ SP5	Molex 70543-0003
200	± 400	C/L	± 24	50 mA	DC-50 (-3dB)	0.5	1	-40+85		Aperture 13x30 mm		Cable	•	110	LAC 300-S/ SP8	
200	± 420	C/L	± 1215	100 mA	DC-100 (-3dB)	0.4	0.5	-40+85		Ø 15.5 mm		Molex	•	44	LF 205-S/SP1	Molex Minifit 5566
200	± 500	C/L	± 24	40 mA	DC-100 (-1dB)	0.7	1	-30+70		Split core Aperture 67x67 mm		AMP		111	LA 200-SD/ SP3	AMP CPC 11/4
200	± 700	C/L	± 15	100 mA	DC-50 (-3dB)	0.5	1.25	-40+85		Aperture 13x30 mm		Molex	•	108	LAC 300-S/ SP1	Molex 70543-0003
300	± 500	C/L	± 1220	150 mA	DC-100 (-3dB)	0.3	0.47	-40+85		Ø 20 mm		Molex	•	55	LF 305-S/SP10	Molex Minifit 5566
300	± 640	C/L	± 15	100 mA	DC-50 (-3dB)	0.4	1	-40+85		Aperture 13x30 mm		Molex	•	108	LAC 300-S/ SP2	Molex 70543-0003
300	± 910	C/L	± 24	60 mA	DC-50 (-3dB)	0.5	1.4	-40+85		Aperture 13x30 mm		Molex	•	108	LAC 300-S/ SP4	Molex 70543-0003
400	± 600	C/L	± 15	80 mA	DC-50 (-3dB)	0.4	1.1	-40+85		Aperture 13x30 mm		Molex	•	108	LAC 300-S/ SP3	Molex 70543-0003

I_{PN}	= 4	10	0 A .	50	00 A						TT	TR - 0)n	-Bo	bard 🖌	Closed–loop
		gy		V _{out}		l _{PN} 5°C	5°C	T _A		Conn	ectio	n		No		
I _{PN}	I _P	olou	U _c	I _{out}	BW	$\begin{array}{c} X @ \\ T_{A} = 2 \end{array}$	X _G @ 7 _A = 2			Primary	s	econdary	s or UL	aging	Type	Features
A	A	Tech	v	@ / _{PN}	kHz	%	%	°C	PCB	Aperture, busbar, other	PCB	Other	ЧU	Pack	iype	T Cataloo
400	± 650	C/L	± 15	100 mA	DC-50 (-3dB)	0.4	1	-40+85		Aperture 13x30 mm		Molex	•	108	LAC 300-S	Molex 70543-0003
400	± 1000	C/L	± 15	133 mA	DC-50 (-3dB)	0.4	1.2	-40+75		Aperture 13x30 mm		Cable	•	109	LAC 300-S/ SP7	
350	± 1200	C/L	± 1524	175 mA	DC-100 (-1dB)	0.3	0.5	-40+85		Ø 27.5 mm		4 x M5		112	LTC 350-S	Screen
350	± 1200	C/L	± 1524	175 mA	DC-100 (-1dB)	0.3	0.5	-40+85		Ø 27.5 mm		4 x M5 + Faston		113	LTC 350-SF	With feet Screen
350	± 1200	C/L	± 1524	175 mA	DC-100 (-1dB)	0.3	0.5	-40+85		Busbar		4 x M5 + Faston		114	LTC 350-T	Screen
350	± 1200	C/L	± 1524	175 mA	DC-100 (-1dB)	0.3	0.5	-40+85		Busbar		4 x M5 + Faston		115	LTC 350-TF	With feet Screen
500	± 700	C/L	± 24	100 mA	DC-100 (-1dB)	0.4	1	-30+70		Split core Aperture 67x67 mm		AMP		111	LA 500-SD/ SP2	AMP CPC 11/4
500	± 1000	C/L	± 24	100 mA	DC-100 (-1dB)	0.3	0.6	-40+85		Ø 30.2 mm		Cable	٠	116	LF 505-S/ SP23	Screen
500	± 1200	C/L	± 1524	125 mA	DC-100 (-1dB)	0.4	0.6	-40+85		Ø 27.5 mm		4 x M5 + Faston		112	LTC 500-S	Screen
500	± 1200	C/L	± 1524	125 mA	DC-100 (-1dB)	0.4	0.6	-40+85		Ø 27.5 mm		4 x M5 + Faston		113	LTC 500-SF	With feet Screen
500	± 1200	C/L	± 1524	125 mA	DC-100 (-1dB)	0.4	0.6	-40+85		Busbar		4 x M5 + Faston		114	LTC 500-T	Screen
500	± 1200	C/L	± 1524	125 mA	DC-100 (-1dB)	0.4	0.6	-40+85		Busbar		4 x M5 + Faston		115	LTC 500-TF	With feet Screen
500	± 1500	C/L	± 1524	100 mA	DC-100 (-1dB)	0.3	0.7	-40+85		Ø 42 mm		4 x M5 + Faston	•	117	LTC 600-S	Screen
500	± 1500	C/L	± 1524	100 mA	DC-100 (-1dB)	0.3	0.7	-40+85		Ø 42 mm		4 x M5 + Faston	٠	118	LTC 600-SF	With feet Screen
500	± 1500	C/L	± 1524	100 mA	DC-100 (-1dB)	0.3	0.7	-40+85		Ø 42 mm		4 x M5 + Faston	•	119	LTC 600-SFC	With feet + clamp Screen
500	± 1500	C/L	± 1524	100 mA	DC-100 (-1dB)	0.3	0.7	-40+85		Busbar		4 x M5 + Faston	•	120	LTC 600-T	Screen
500	± 1500	C/L	± 1524	100 mA	DC-100 (-1dB)	0.3	0.7	-40+85		Busbar		4 x M5 + Faston	•	121	LTC 600-TF	With feet Screen

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com

TTR

	I_{PN}	= 1	1000	0 A .	20	000	Α		-	ГТ	R ∠		Open–loop		Clo	osed-loop	Fluxgate
	Ι _{ΡΝ} Α	I _P A	chnology	U _c V	V _{out} I _{out}	BW kHz	$X \otimes I_{PN}$ $T_{A} = 25^{\circ}C$	$X_G @ I_{PN}$ $T_A = 25^{\circ}C$	T _A	F	Conn [.] Primary	ectio	DN econdary	UR or UL	skaging No	Туре	Features
			Це		₩ I _{PN}		%	%		PCB	Aperture, busbar, other	PCB	Other		Рас		
	1000	± 1100	O/L	± 15	10 V	DC-10 (-3dB) ¹⁾	1.8	2.3	-40+85		Ø 40 mm		Screws		122	HTC 1000-S/SP4	
	1000	± 1500	C/L	± 24	200 mA	DC-150 (-1dB)	0.3	0.5	-40+85		Ø 38.5 mm		4 x M4	•	123	LF 1005-S/SP14	Screen
	1000	± 2400	C/L	± 1524	200 mA	DC-100 (-1dB)	0.3	0.4	-40+85		Ø 42 mm		4 x M5 + Faston	•	117	LTC 1000-S	Screen
	1000	± 2400	C/L	± 1524	250 mA	DC-100 (-1dB)	0.3	0.4	-40+85		Ø 42 mm		4 x M5 + Faston	•	124	LTC 1000-S/SP1	Screen
	1000	± 3000	C/L	± 1524	250 mA	DC-100 (-1dB)	0.3	0.4	-40+85		Ø 42 mm		4 x Faston	•	125	LTC 1000-S/SP25	Screen
	1000	± 2400	C/L	± 1524	200 mA	DC-100 (-1dB)	0.3	0.4	-40+85		Ø 42 mm		4 x M5 + Faston	•	118	LTC 1000-SF	With feet Screen
	1000	± 2400	C/L	± 1524	200 mA	DC-100 (-1dB)	0.3	0.4	-40+85		Ø 42 mm		4 x M4 + Faston	•	126	LTC 1000-SF/SP24	With long feet Footprint compatible with former LT 1000-SI series Screen
1	1000	± 2400	C/L	± 1524	200 mA	DC-100 (-1dB)	0.3	0.4	-40+85		Ø 42 mm		4 x M5 + Faston	•	119	LTC 1000-SFC	With feet + clamp Screen
	1000	± 2400	C/L	± 1524	200 mA	DC-100 (-1dB)	0.3	0.4	-40+85		Busbar		4 x M5 + Faston	•	120	LTC 1000-T	Screen
	1000	± 2400	C/L	± 1524	200 mA	DC-100 (-1dB)	0.3	0.4	-40+85		Busbar		4 x M5 + Faston	•	121	LTC 1000-TF	With feet Screen
	1000	± 2500	O/L	± 15	5 V	DC-10 (-3dB) ¹⁾	1.7	2	-40+70		Aperture 18x54 mm		Burndy		127	HAR 1000-S	Burndy SMS6GE4
	2000	± 2200	O/L	± 15	10 V	DC-10 (-3dB) ¹⁾	1.8	2.3	-40+85		Ø 40 mm		Screws		122	HTC 2000-S/SP4	
	2000	± 3000	Fluxgate ITC	± 24	800 mA	DC-27 (3dB) ^{fj}	0.0015	0.01	-40+85		Ø 63 mm		D-Sub		128	ITC 2000-S/SP1	Class 0.5R accuracy D-Sub male 15cts Test circuit

I_{PN}	= 2	200	0 A .	40	000	Α			Т	TR		Open-loop			Closed–loop	Fluxgate
I _{PN} A	I _P A	chnology	U _c V	V _{out} I _{out}	BW kHz	$\begin{array}{l} X @ I_{PN} \\ T_{A} = 25^{\circ} C \end{array}$	$X_G @ I_{PN}$ $T_A = 25^{\circ}C$	T _A		Conne	ectic Se	condary	JR or UL	kaging No	Туре	Features
		Tec		@ I _{pn}		%	%	°C	PCB	Aperture, busbar, other	PCB	Other		Pac		
2000	± 3500	C/L	± 1524	400 mA	DC-150 (-1dB)	0.2	0.325	-40+85		Ø 56 mm		LEMO	•	129	LF 2005-S/SP1	LEMO EEJ.1B.304. CYC Internal screen
2000	± 3500	C/L	± 1524	400 mA	DC-100 (-1dB)	0.2	0.325	-40+80		Ø 56 mm		LEMO	•	130	LF 2005-S/SP27	LEMO EEJ.1B.304. CYC Internal screen Reversed current
2000	± 3500	C/L	± 1524	400 mA	DC-100 (-1dB)	0.5	0.55	-40+85		Ø 56 mm		4 x M5	•	131	LF 2005-S/SP28	Screen
3000	± 3300	O/L	± 15	10 V	DC-10 (-3dB) ¹⁾	1.8	2.3	-40+85		Ø 40 mm		Screws		122	HTC 3000-S/SP4	
3300	± 5000	C/L	± 24	660 mA	DC-100 (-1dB)	0.3	0.32	-25+70		Ø 102 mm		LEMO		132	LT 4000-S/SP24	LEMO EGJ.1B.304. CYC Screen
3300	± 5000	C/L	± 24	660 mA	DC-100 (-1dB)	0.3	0.32	-25+70		Ø 102 mm		3 x M5		133	LT 4000-S/SP44	Internal screen
4000	± 6000	C/L	± 24	800 mA	DC-100 (-1dB)	0.3	0.5	-25+70		Ø 102 mm		3 x M5		72	LT 4000-S	
4000	± 6000	C/L	± 24	800 mA	DC-100 (-1dB)	0.3	0.5	-40+70		Ø 102 mm		AMP		134	LT 4000-S/SP12	AMP CPC 13/9 Test circuit Screen
4000	± 6000	C/L	± 24	800 mA	DC-100 (-1dB)	0.3	0.5	-40+70		Ø 102 mm		3 x M5		72	LT 4000-S/SP34	
4000	± 6000	C/L	± 24	800 mA	DC-100 (-1dB)	0.3	0.5	-40+70		Ø 102 mm		LEMO		135	LT 4000-S/SP35	LEMO EGJ.1B.305. CYC Test circuit Internal screen
4000	± 6500	C/L	± 24	1 A	DC-100 (-1dB)	0.3	0.5	-40+85		Ø 102 mm		Cable		136	LT 4000-S/SP43	Screen
4000	± 6000	C/L	± 24	800 mA	DC-100 (-1dB)	0.3	0.5	-25+70		Busbar		3 x M5		73	LT 4000-T	
4000	± 6500	C/L	± 24	1 A	DC-100 (-1dB)	0.3	0.5	-40+85		Busbar		Cable		137	LT 4000-T/SP40	
4000	± 6000	Fluxgate ITC	± 24	1600 mA	DC-82 (3dB) ^{f)}	0.0003	0.05	-40+85		Ø 102 mm		7 x M5 inserts		138	ITC 4000-S	Class 0.5R accuracy Test circuit

 Notes:
 Image: Constraint of the second s

47

TTR

LTC Series - Modular Current Transducers

TTR - On-Board

Accessories	References
Busbar Kit * (busbar : 155 x 25 x 6 mm)	93.34.41.100.0
Busbar Kit * (busbar : 112 x 25 x 6 mm)	93.34.41.101.0
Busbar Fastening Kit **	93.34.41.200.0
Feet fixing Kit ***	93.34.43.100.0

including all the necessary for its mounting such as screws, washers, nuts, 2 clamps, busbar.

- ** as with * but without the busbar. ***
 - including screws and 2 feet.

Rms voltage value for partial discharge extinction depends on the busbar. Refer to the datasheet of the corresponding product.

1	Busbar KIT * (busbar : 210 x 40 x 12 mm)	93.34.61.10
2	Busbar KIT * (busbar : 185 x 40 x 8 mm)	93.34.61.10
3	Busbar KIT * (busbar : 285 x 36 x 12 mm)	93.34.61.10
4	Busbar KIT * (busbar : 260 x 36 x 12 mm)	93.34.61.10
5	Busbar KIT * (busbar : 195 x 36 x 10 mm)	93.34.61.10
6	Busbar KIT * (busbar : 36 mm Ø x 325 mm)	93.34.61.10
7	Busbar KIT * (busbar : 185 x 40 x 10 mm)	93.34.61.10
8	Busbar KIT * (busbar : 180 x 40 x 12 mm)	93.34.61.10
9	Busbar Fastening Kit (M5 x 25)** dedicated to busbars from lines 1 to 5 and lines 7, 8.	93.34.61.20
10	Busbar Fastening Kit (M5 x 40)** dedicated to busbar from line 6	93.34.61.20
11	Feet fixing Kit ***	93.34.63.10

49

$I_{\rm PN}$ = 2 A ... 10 A (Fault Detection)

TTR - Spec. App. Fluxgate

.....

		>				I _{PN} 5°C			Connectio	n			0		
$I_{_{\mathrm{PN}}}$	$I_{\rm P}$	golor	U _c	V _{out} I	BW	$X_{G} \otimes T_{A} = 2$	T _A		Primary	Seco	ondary	or UL	ging N	Type	Features
A	A	Techi	V	@ I _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	UR	Packa		
2	± 8	Flux "C"	± 1524	20 mA	DC-10 (-3dB)	3	-25+70	70 Ø 63.2 mm			Cable		139	CD 1000-S/SP6	Differential measurement: 2 x 1200 A _{RMS}
10	± 10	Flux "C"	± 24	10 V	DC-20 (-3dB)	3	-40+70	2 x Busbars: 1 of 20x20x358 mm and 1 of 20x20x206 mm			Cable		140	CD 1000-T/SP7	Differential measurement: 2 x 1500 A _{RMS}

$V_{\rm PN} = 0.03$ V (Shunt Isolator)

															101
		>				°C 2°∠			Conr	necti	on		<u>_</u>		
$V_{_{\mathrm{PN}}}$	V _P	nolog	U _c	V _{out} I _{out}	BW	X _G @ 7 _A = 2	T _A	Pr	imary	Se	econdary	or UL	lging N	Туре	Features
V	V	Tech	V	@ V _{PN}	kHz	%	°C	PCB	Aperture, busbar, other	PCB	Other	UR	Packa		
0.03	± 0.045	Insulating digital technology	± 1524	50 mA	DC-10 (3dB)	0.2	-40+85		Busbar		M5 Connecting		141	DI 30/SP1	Shunt Isolator Class 1R accuracy vs EN50463 when used with Class 0.2 shunt

(139

(141)

$I_{PAC} =$	$I_{PAC} = 0.1 A_{AC} \dots 20 A_{AC}$ (Interference Frequencies Detection) TTR													
	gy		V _{out}		I _P 5°C	T _A		Conne	ectio	'n		No		
I _P A _{AC}	echnolog	U _c V	I _{out} @ I _P	BW kHz	$X_{A} \otimes T_{A} = 2$	°C	F	Primary	Se	econdary	UR or UL	ackaging	Туре	Features
	-		·		%		PCB	Aperture, busbar, other	PCB	Other		č		
0.120 Measurement of alternating signal on DC primary current up to 1000 ADC	Rogowski	Self powered	2.π.M. f.I _{PAC} V ^{g)} M.dI _p /dt V ²⁾	0.023	3	-40+85		Ø 42 mm		Cable		142	RA 1005-S	g) For sinusoidal wave 2.π.M= 25.10 ⁻⁶ H f in Hz 2) Instantaneous Test circuit
0.120 Measurement of alternating signal on DC primary current up to 3000 ADC	Rogowski	Self powered	2. π .M. f. I_{PAC} V ^h) M.d $I_{\rm P}$ /d t V ²)	0.023	3	-25+70		Ø 102 mm		Cable		143	RA 2000-S/SP1	h) For sinusoidal wave 2.π.M= 27.657.10 ⁻⁶ H f in Hz 2) Instantaneous Test circuit
0.120 Measurement of alternating signal on DC primary current up to 4000 ADC	Rogowski	Self powered	2. π .M. f. I_{PAC} V ^h) M.d I_{p} /d t V ²)	0.023	3	-40+70		Ø 102 mm		Cable		144	RA 2000-S/SP2	h) For sinusoidal wave 2.π.M= 27.657.10 ⁻⁶ H f in Hz 2) Instantaneous Test circuit
0.120 Measurement of alternating signal on DC primary current up to 4000 ADC	Rogowski	Self powered	2.π.М. f.I _{PAC} V ^{h)} M.dI _P /dt V ²⁾	0.023	3	-40+70		Ø 102 mm		LEMO connector		145	RA 2000-S/SP3	h) For sinusoidal wave 2.π.M= 27.657.10 ⁻⁶ H f in Hz 2) Instantaneous Test circuit
0.120 Measurement of alternating signal on DC primary current up to 4000 ADC	Rogowski	Self powered	2. π .M. f. I_{PAC} V ^h) M.d I_p /dt V ²)	0.023	3	-40+70 IP57		Ø 102 mm		Cable		146	RA 2000-S/SP4	h) For sinusoidal wave 2.π.M= 27.657.10 ⁻⁶ H f in Hz 2) Instantaneous Test circuit
0.120 Measurement of alternating signal on DC primary current up to 4000 ADC	Rogowski	Self powered	2. π .M. f. I_{PAC} V ^h) M.d I_p /d t V ²)	0.023	3	-40+70		Busbar 20x100x340 mm		Cable		147	RA 2000-T/SP2	h) For sinusoidal wave 2.π.M= 27.657.10 ⁻⁶ H f in Hz 2) Instantaneous Test circuit

(143) (144) (145) (146) (147)

TTR

50

(142)

	=	10	Α	60	A 0 0		Т	TF	R - Tra		k. / Su	ıb.	\square	Open-loop	Closed-loop
I _{PN}	I _P	ye	U _c	V _{out}	BW	یم چ	T _A		Conr	necti	on		oN		
A	A	chnolog	V	I _{out}	kHz	$\begin{array}{l} X @ I_{\rm F} \\ T_{\rm A} = 25 \end{array}$	•0		Primary	Ş	Secondary	UR or UL	ckaging	Туре	Features
		Ц		ΨI _{PN}		%	C	PCB	Aperture, busbar, other	PCB	Other		Pa		
10	± 20	C/L	+ 24	4-20 mA _{DC} @ -/+I _P	DC	1 a)	-25+55 IP67		Split core Ø 15 mm		0.25 m wire + connector		148	PCM 10-P	•
10	± 20	C/L	+ 24	4-20 mA _{DC} @ -/+I _P	DC	1 a)	-25+55		Split core Ø 15 mm		2 m wire		149	PCM 10-P/SP1	
20	± 40	C/L	+ 24	4-20 mA _{DC} @ -/+I _P	DC	1 a)	-25+55 IP67		Split core Ø 15 mm		0.25 m wire + connector		148	PCM 20-P	
20	+ 20	C/L	+ 24	4-20 mA _{DC} @ +I _P	DC	1 a)	-25+55		Split core Ø 15 mm		3 m wire		150	PCM 20-P/SP2	
20	+ 20	C/L	+ 24	4-20 mA _{DC} @ +I _P	DC	1 a)	-25+55		Split core Ø 15 mm		0.25 m wire + connector		151	PCM 20-P/SP3	Same -
20	+ 20	C/L	+ 24	4-20 mA _{DC} @ +I _P	DC	1 a)	-25+55		Split core Ø 15 mm		2.5 m wire + connector		152	PCM 20-P/SP4	1
20	± 40	C/L	+ 24	4-20 mA _{DC} @ -/+I _P	DC	1 a)	-25+55		Split core Ø 15 mm		3 m wire		150	PCM 20-P/SP6	
30	± 60	C/L	+ 24	4-20 mA _{DC} @ -/+I _P	DC	1 a)	-25+55 IP67		Split core Ø 15 mm		0.25 m wire + connector		148	PCM 30-P	0
30	+ 30	C/L	+ 24	4-20 mA _{DC} @ +I _P	DC	1 a)	-25+55		Split core Ø 15 mm		3 m wire		150	PCM 30-P/SP1	
5	± 25	C/L	+ 24	4-12 mA _{DC}	0.04-1 (-3dB)	2 ^{a)}	-25+55		Split core Ø 15 mm		0.25 m wire + connector		153	PCM 5-PR/SP1	True RMS output
5	± 25	C/L	+ 24	4-12 mA _{DC}	0.04-1 (-3dB)	2 ^{a)}	-25+55 IP67		Split core Ø 15 mm		2 m wire		154	PCM 5-PR/SP2	True RMS output
10	± 30	C/L	+ 24	4-12 mA _{DC}	0.04-1 (-3dB)	2 ^{a)}	-25+55		Split core Ø 15 mm		0.25 m wire + connector		153	PCM 10-PR/SP1	True RMS output
4000	± 4000	O/L	± 15	10 V	DC-3 (+/-3dB) 1)	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 4000-SB	Fujicon F2023A (6 terminals)
4000	± 4000	O/L	± 15	20 mA	DC-3 (+/-3dB) 1)	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 4000-SBI	Fujicon F2023A (6 terminals)
4000	± 4000	O/L	± 15	4 mA @ -I _{PN} 20 mA @ +I _{PN}	DC-3 (+/-3dB) 1)	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 4000-SBI/SP1	Fujicon F2023A (6 terminals)
4000	± 4000	O/L	± 15	0-20 mA _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 4000-SRI	True RMS output Fujicon F2023A (6 terminals)
4000	± 4000	O/L	± 15	4-20 mA _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 4000-SRI/SP1	True RMS output Fujicon F2023A (6 terminals)
4000	± 4000	O/L	± 15	0-10 V _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 4000-SRU	True RMS output Fujicon F2023A (6 terminals)
6000	± 6000	O/L	± 15	10 V	DC-3 (+/-3dB) 1)	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 6000-SB	Fujicon F2023A (6 terminals)
6000	± 6000	O/L	± 15	20 mA	DC-3 (+/-3dB) 1)	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 6000-SBI	Fujicon F2023A (6 terminals)
6000	± 6000	O/L	± 15	4 mA @ -I _{PN} 20 mA @ +I _{PN}	DC-3 (+/-3dB) 1)	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 6000-SBI/SP1	Fujicon F2023A (6 terminals)
6000	± 6000	O/L	± 15	0-20 mA _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 6000-SRI	True RMS output Fujicon F2023A (6 terminals)
6000	± 6000	O/L	± 15	4-20 mA _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 6000-SRI/SP1	True RMS output Fujicon F2023A (6 terminals)
6000	± 6000	O/L	± 15	0-10 V _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 6000-SRU	True RMS output Fujicon F2023A (6 terminals)

I _{PN} :	= 1(00	00	Α	20000	Α	TTF	२ -	- Trac	ĸ.	/ Su	ıb.		Open-loop	Closed-loop
$I_{_{\mathrm{PN}}}$	I _P	gy	U _c	V _{out}	BW	I _{PN} 5°C	T _A		Conne	ectio	ı	_	g No		
A	A	schnold	v	I _{out} @ I _{□N}	kHz	X @ . T _A = 2	°C		Primary	Se	econdary	UR or U	ackaging	Туре	Features
		Ĕ		PN		%		PCB	Aperture, busbar, other	PCB	Other		Pa		
10000	± 10000	O/L	± 15	10 V	DC-3 (+/-3dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 10000-SB	Fujicon F2023A (6 terminals)
10000	± 10000	O/L	± 15	20 mA	DC-3 (+/-3dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 10000-SBI	Fujicon F2023A (6 terminals)
10000	± 10000	O/L	± 15	4 mA @ -I _{PN} 20 mA @ +I _{PN}	DC-3 (+/-3dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 10000-SBI/SP1	Fujicon F2023A (6 terminals)
10000	± 10000	O/L	± 15	0-20 mA _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 10000-SRI	Fujicon F2023A (6 terminals)
10000	± 10000	O/L	± 15	4-20 mA _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 10000-SRI/SP1	True RMS output Fujicon F2023A (6 terminals)
10000	± 10000	O/L	± 15	0-10 V _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 10000-SRU	True RMS output Fujicon F2023A (6 terminals)
12000	± 12000	O/L	± 15	10 V	DC-3 (+/-3dB) 1)	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 12000-SB	Fujicon F2023A (6 terminals)
12000	± 12000	O/L	± 15	20 mA	DC-3 (+/-3dB) 1)	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 12000-SBI	Fujicon F2023A (6 terminals)
12000	± 12000	O/L	± 15	4 mA @ -I _{PN} 20 mA @ +I _{PN}	DC-3 (+/-3dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 12000-SBI/SP1	Fujicon F2023A (6 terminals)
12000	± 12000	O/L	± 15	0-20 mA _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 12000-SRI	True RMS output Fujicon F2023A (6 terminals)
12000	± 12000	O/L	± 15	4-20 mA _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 12000-SRI/SP1	True RMS output Fujicon F2023A (6 terminals)
12000	± 12000	O/L	± 15	0-10 V _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 12000-SRU	True RMS output Fujicon F2023A (6 terminals)
14000	± 14000	O/L	± 15	10 V	DC-3 (+/-3dB) 1)	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 14000-SB	Fujicon F2023A (6 terminals)
14000	± 14000	O/L	± 15	20 mA	DC-3 (+/-3dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 14000-SBI	Fujicon F2023A (6 terminals)
14000	± 14000	O/L	± 15	4 mA @ -I _{PN} 20 mA @ +I _{PN}	DC-3 (+/-3dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 14000-SBI/SP1	Fujicon F2023A (6 terminals)
14000	± 14000	O/L	± 15	0-20 mA _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 14000-SRI	Fujicon F2023A (6 terminals)
14000	± 14000	O/L	± 15	4-20 mA _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 14000-SRI/SP1	Fujicon F2023A (6 terminals)
14000	± 14000	O/L	± 15	0-10 V _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 14000-SRU	True RMS output Fujicon F2023A (6 terminals)
20000	± 20000	O/L	± 15	10 V	DC-3 (+/-3dB) 1)	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 20000-SB	Fujicon F2023A (6 terminals)
20000	± 20000	O/L	± 15	20 mA	DC-3 (+/-3dB) 1)	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 20000-SBI	Fujicon F2023A (6 terminals)
20000	± 20000	O/L	± 15	4 mA @ -I _{PN} 20 mA @ +I _{PN}	DC-3 (+/-3dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 20000-SBI/SP1	Fujicon F2023A (6 terminals)
20000	± 20000	O/L	± 15	0-20 mA _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 20000-SRI	True RMS output Fujicon F2023A (6 terminals)
20000	± 20000	O/L	± 15	4-20 mADC	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 20000-SRI/SP1	Irue RMS output Fujicon F2023A (6 terminals)
20000	± 20000	O/L	± 15	0-10 V _{DC}	DC & 0.0153 (+/-3 dB) ¹⁾	2	-25+85		Aperture 162x42 mm		Fujicon		71	HAZ 20000-SRU	True RMS output Fujicon F2023A (6 terminals)

<u>Notes:</u> a) Exclude electrical offset 1) Small signal bandwidth to avoid excessive core heating at high frequency

Dedicated data sheets are the only recognized reference documents for the given performances and data – Data sheets: www.lem.com

$V_{\scriptscriptstyle PN}$	= 1	0 V	1	500	V					Т	ΓR	- On-E	Board	Closed-loop	
i (V m	r _{PN}) nA	I _Ρ (V _Ρ) mA	Technology	U _c V	Ф	out I _{PN}	<i>BW</i> kHz	$X_{\rm G}$ $T_{\rm A} = 25 \ ^{\circ}{\rm C}$ % @ $I_{\rm PN}$ with max offset taken		τ _Α °C		UR or UL	Packaging No	Туре	Features
1 (10 to ⁻	0 1500 V)	± 14 (2100 V)	C/L	± 15	25	mA	Note c)	0.8		-40+85		•	76	LV 25-P/SP5 note d)	Isolation test voltage: 4.2 kV _{RMS}
$V_{\scriptscriptstyle PN}$. = 5	50 V	1	500) V									_	IDT
±V _{PN} V	±V _P V		Technology	v	c ,	V _{out} I _{out} @ V _{PN}	BW kHz	X_{G} $T_{A} = 25 °C$ % @ with m offset ta	= C V _{PN} nax aken	τ _Α °C	UR or UL	Packaging No	Туре	Connection primary	Connection secondary
50	75	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		78	DVL 50	2 x M5	3 x M5 + Faston
125	188	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		78	DVL 125	2 x M5	3 x M5 + Faston
150	225	Insulati tech	ng digital nology	± 15.	± 1524 50 mA		DC-14 (-3	dB) 0.5	5	-40+85		78	DVL 150	2 x M5	3 x M5 + Faston
250	375	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		78	DVL 250	2 x M5	3 x M5 + Faston
500	750	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		78	DVL 500	2 x M5	3 x M5 + Faston
750	1125	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		78	DVL 750	2 x M5	3 x M5 + Faston
750	1125	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		86	DVL 750/SP2	M5	M5 insert
1000	1500	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		78	DVL 1000	2 x M5	3 x M5 + Faston
1000	1500	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		87	DVL 1000/SP1	M5	Burndy vertical
1000	1500	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		86	DVL 1000/SP5	M5	M5 insert
1000	1500	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		88	DVL 1000/SP7	cable	cable
1000	1500	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		89	DVL 1000/SP8	M5	cable
1000	1500	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-12 (30	dB) 0.3	3	-40+85		81	DV 1000	Cable	Cable
1200	1800	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-12 (30	dB) 0.3	3	-40+85		82	DV 1200/SP2	Cable	M5 + Faston
1500	2250	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		78	DVL 1500	2 x M5	3 x M5 + Faston
1500	2250	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		87	DVL 1500/SP1	M5	Burndy vertical
1500	2250	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		86	DVL 1500/SP2	M5	M5 insert
1500	2250	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		88	DVL 1500/SP5	cable	cable
1500	2250	Insulati tech	ng digital nology	± 15.	24	50 mA	DC-14 (-3	dB) 0.5	5	-40+85		89	DVL 1500/SP6	M5	cable
1500	2250	Insulati	ng digital	± 15.	24	50 mA	DC-12 (30	dB) 0.3	3	-40+85		82	DV 1500	Cable	M5 + Faston

(76)

$V_{\rm PN} = 140 \text{ V} \dots 4200 \text{ V}$ TTR ogy $\pm V_{\rm PN}$ $\pm V_{\rm P}$ $V_{_{\rm out}}$ BW $I_{\rm out}$ Technol V kHz @ V_{PN} 2000 3000 Insulating digital technology ± 15...24 50 mA DC-14 (-3dB) 2000 3000 Insulating digital technology ± 15...24 50 mA DC-14 (-3dB) 2000 3000 Insulating digital technology ± 15...24 50 mA DC-14 (-3dB) 2000 3000 nsulating digital technology ± 15...24 50 mA DC-14 (-3dB) 2000 3000 nsulating digital technology ± 15...24 50 mA DC-12 (3dB) 2000 3000 Insulating digital technology ± 15...24 50 mA DC-12 (3dB) 2000 3000 Insulating digital technology ± 15...24 DC-12 (3dB) 50 mA 4200 ± 15...24 DC-12 (3dB) 2800 Insulating digital technology 50 mA ± 15...24 2800 4200 Insulating digital technology 50 mA DC-12 (3dB) 3000 4500 ± 15...24 Insulating digital technology 50 mA DC-12 (3dB) 4000 6000 Insulating digital technology ± 15...24 50 mA DC-12 (3dB) 4000 6000 Insulating digital technology ± 15...24 50 mA DC-12 (3dB) 4200 6000 nsulating digital technology ± 15...24 7 V DC-12 (3dB) 4200 6000 ± 15...24 50 mA DC-12 (3dB) Insulating digital technology 4200 6000 Insulating digital technology ± 15...24 DC-12 (3dB) 50 mA 4200 6000 Insulating digital technology ± 15...24 50 mA DC-12 (3dB) 10 V/200 140 200 Fluxgate "C" ± 15 DC-300 (-1dB) V 10 V/500 350 500 ± 15 DC-300 (-1dB) Fluxgate "C" V DC-500 10 1000 Fluxgate "C" 700 ± 15 (-1dB @ 50 V/1000 V % V_{PN}) DC-800 10 840 1200 Fluxgate "C" ± 15 V/1200 V 1dB @ 40% V_{PN} 10 DC-800 1000 1500 ± 15 Fluxgate "C" V/1500 V -1dB @ 33% V_{PN}) 10 DC-300 V/2000 V (-1dB @ 25% V_{PN}) 1400 2000 Fluxgate "C" ± 15

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com

Notes:

TTR

c) See response time in the individual data sheet

d) The primary and secondary connections of this transducer are done on PCB

54

- Or	ו-Bo	ar	d	IDT		Fluxgate
X_{G} $T_{A} =$ 25 °C % @ V _{PN} with max offset taken	T _A °C	UR or UL	Packaging No	Туре	Connection primary	Connection secondary
0.5	-40+85		78	DVL 2000	2 x M5	3 x M5 + Faston
0.5	-40+85		87	DVL 2000/SP1	M5	Burndy vertical
0.5	-40+85		88	DVL 2000/SP5	cable	cable
0.5	-40+85		89	DVL 2000/SP6	M5	cable
0.3	-40+85		81	DV 2000	Cable	Cable
0.3	-40+85		82	DV 2000/SP1	Cable	M5 + Faston
0.3	-40+85		83	DV 2000/SP2	M5	M5
0.3	-40+85		90	DV 2800/SP1	M5 vertical	Burndy vertical
0.3	-40+85		84	DV 2800/SP4	M5	M5
0.35	-40+85		84	DV 3000/SP1	M5	M5
0.3	-40+85		91	DV 4000/SP1	M5	Burndy vertical
0.3	-40+85		90	DV 4000/SP2	M5 vertical	Burndy vertical
0.3	-40+85		92	DV 4200/SP1	M5	D-Sub
0.3	-40+85		81	DV 4200/SP3	Cable	Cable
0.3	-40+85		84	DV 4200/SP4	M5	M5
0.3	-40+85		93	DV 4200/SP5	M5 vertical	D-Sub
0.2 @ V _P	-40+85		80	CV 3-200	2 x M5	4 x M5
0.2 @ V _P	-40+85		80	CV 3-500	2 x M5	4 x M5
0.2 @ V _P	-40+85		80	CV 3-1000	2 x M5	4 x M5
0.2 @ V _P	-40+85		80	CV 3-1200	2 x M5	4 x M5
0.2 @ V _P	-40+85		80	CV 3-1500	2 x M5	4 x M5
0.2 @ V _P	-40+85		80	CV 3-2000	2 x M5	4 x M5

 81
 82
 83
 84

 90
 91
 92
 93

TTR - On-Board Energy Measurement for **On-Board Applications: EM4T II**

With the liberalization and/or privatization of some of the major rail networks, the opportunity for traction units to cross national boundaries now exists, using both the installed base of rail and planned rail networks.

This gave train designers the daunting task to develop multisystem locomotives to be used on the different existing networks

These prime movers would be needed to operate on the different supply networks of bordering countries along the route without requiring an equipment exchange at the regional or network supply border.

Today, it is therefore technically possible to transfer people or goods throughout Europe, from Norway to Sicily for example, without any physical exchange of the locomotive (Picture 1).

Changes in the Energy Markets in the form of deregulation and increased competition for large user contracts brought potential benefits for those willing to negotiate for their electrical traction supply requirements.

This negotiation however requires greater knowledge and understanding of the load profile of bulk supply points in one of the harshest electrical environments - the traction supply.

With the energy meter from LEM, the data for the precise calculation of both supplied and regenerated energy for billing purposes can be accomplished on the train, independently of the energy supplier.

The second generation of universal energy meters for traction especially designed for on-board applications

With the EM4T II energy meter LEM introduced the second generation of universal energy meters for electric traction units with the authorization for billings. Thanks to the advanced capability (such as input channels to connect any actual available current and voltage transducer or transformer) of the EM4T II, it is used both in new multi-system locomotives and for retrofitting to all types of electrical rail vehicles already in operation. Recently, the new EN 50463 standards define characteristics of energy measurement function (EMF) as well as transducers for current and voltage DC or AC measurement used for EMF. This evolution led LEM to upgrade EM4T to the latest model: EM4T II.

EM4T II - the load profile provider

EM4T II is a single energy meter complying to all the requirements of EN 50463-x & EN 50155 standards for metering and On-Board use, and thus satisfies the requirements of EC Decision 2011/291/EC (TSI "Locomotives and passenger rolling stock").

EM4T II processes signals from the transformer and electronic converter systems for current and voltage to calculate energy values which are stored as load profile information.

In this load profile (set and stored in intervals of 1, 2, 3, 5, 10 or 15 minutes period length according to the user), the primary energy (delta) values are recorded together with data such as:

- Date and time stamp
- Events
- Train identification numbers
- Absolute energy values for consumption and regeneration of active and reactive energy
- Frequency of the network (16.7 Hz, 50 Hz, 60 Hz or DC)
- Additional "user" load profile like the voltage with a shorter time interval (feature coming in a second design step)
- Position of the train at the time the load profile was stored and/or the event arose
- Further functions, such as voltage detection can be set.

The measured energy information includes separately the consumed and regenerated active and reactive energy and is stored in the load profile memory (at 5 minutes period length) for at least 300 days.

The input variables (current and voltage) are connected to the measuring circuits of the EM4T II via differential inputs (Picture 2 and 3), designed for connection of all current and voltage transducers/transformers currently available on the market.

Four input channels are proposed for metering of both DC and AC signals of any existing traction network (see chart 1).

The EM4T II is suitable for usage in multi-system vehicles. Supply systems 25 kV 50/60 Hz and 15 kV 16.7 Hz, or either 600 V DC, 750 V DC, 1.5 kV DC or 3 kV DC are covered. A system change is detected by the energy meter and stored in the load profile.

The requirements for current measurement at this level can be diverse

A large aperture transducer is appropriate when the primary conductor is highly isolated to support the high level of voltage (15 to 25 kV AC as nominal level): LEM's ITC Transducer Series is of this category.

Shunts can also be used at this level associated to LEM DI models providing the required insulation and the class 1R accuracy (when used with a class 0.2R shunt).

FM4T II

Energy meter for electrical traction unit railways

- Data recording according to EN 50463-x
- Accuracy 0.5R according to EN 50463-2
- Multi-System capability for DC, 16.7 Hz, 50 Hz, 60 Hz
- Supply systems according to EN50163: 25 kV 50 Hz, 15 kV 16.7 Hz, 600 V DC, 750 VDC, 1.5 kV DC, 3 kV DC
- Measurement of consumed and regenerated active and reactive energy
- For DC optionally with up to 3 DC current channels
- Input for GPS receiver
- Load profile recording including location data
- RS-type interface for data communication
- Ethernet-interface (Available in the next version)

Version	Channel 1	Channel 2	Channel 3	Channel 4
AC	AC-voltage	AC-current		
ACDC	AC-voltage	AC-current	DC-voltage	DC-current
DC	DC-voltage	DC-current		
DCDC	DC-voltage	DC-current	DC-current	
DCDCDC	DC-voltage	DC-current	DC-current	DC-current

Chart 1: EM4T II possible configurations for inputs

TTR - On-Board

Picture 1 : European rail networks

not electrified electrified (DC) tracks 1.5 kV DC 3 kV DC 15 kV 16.7 Hz 25 kV 50 Hz 3 kV DC / 25 kV 50Hz

TTR

Siemens Train

57

TTR - On-Board

For the DC networks, the transducer's inherent isolation properties are adequate.

Analog to Digital Sigma-Delta conversion processors suppress high frequency disturbances in all channels, enhancing even further the capacity to handle the often rapid supply transitions within traction supplies.

The microprocessor reads the sampled values and calculates the real energy in adjustable intervals (standard value = 5 min). The results are then saved in flash memory (a special variant of an EEPROM).

The signals from 2 AC and 2 DC input channels (each for Uand I- input) are used to calculate the energy values. The highaccuracy measurement of the energy value is guaranteed by the digitally sampled signal converter implemented, providing the highest level of temperature and long-term stability.

Optionally, the EM4T II for DC measurement is available in a version with a single voltage input and up to three current inputs to measure the energy consumption for vehicles with multiple power supply points.

The EM4T II has a dedicated RS232 interface input for receiving serial GPS-data messages according to NMEA 0183, including the location data of the energy consumption point. It synchronizes also the internal clock of the meter using the obtained time information.

A log book in full conformity with EN 50463-3 is stored in the EM4T II. This log book information contains e.g. loss and gain of the operating voltage, power up/power down events of the supply voltage, clock synchronization, and the modification of parameters influencing the energy calculating.

Identification data of the vehicle or train are also stored and can be retrieved separately. The self-luminous display of the EM4T II shows cyclically all relevant energy and status information without required operations of a mechanical or optical button.

All measured and stored data can be read out via the RS-type interface (via modem or local).

The interface versions RS232, RS422 or RS485 are available. The applied data communications protocol is IEC 62056-21 and is therefore easily adaptable by all common remote reading systems. In the next version, the EM4T II will also provide an Ethernet-interface.

The supply voltage is selectable between 24 V and 110 V. Optionally, the EM4T II offers a power supply of 12 V for a communication unit (modem).

The operating conditions (considering EMC, temperature, vibration, etc.) meet the special requirements for traction use, including EN 50155, EN 50121-3-2, EN 50124-1, and EN 61373. The compact and fire-retardant enclosure provides protection against the ingress of moisture or foreign objects according IP 65.

Part of a high voltage frame of a multi-system locomotive with the positions needed for current & voltage measurement

DI 30...200 mV (Shunt isolator) Class 1R High galvanic isolation

DV-VOLTAGE FAMILY 1200 to 4200 V_{BMS} One unique compact package Class 0.75R accuracy _ow thermal drift

ITC 2000...4000-S FAMILY Better than Class 0.5R High temperature stability

Picture 3: Block diagram of the LEM energy meter

Standards & Regulations

- EN 50463-x Draft:
- (2012): Railway application Energy measurement on board trains DC measurement Class 2 AC measurement Class 1.5
- EN 50155 Railway applications (2007): Electronic equipment used on rolling stock
- EN 50121-3-2 Railway applications Electromagnetic compatibility (2006): Part 3-2: Rolling stock - Apparatus
- Railway applications • EN 61373 (2010): Rolling stock equipment Shock and vibration tests
- EN 50124-1 Railway applications (2001): Insulation coordination Part 1: Basic requirements
- IEC 62056-21 Electricity metering (2002): Data exchange for meter reading, tariff and load control Part 21: Direct local data exchange

TTR

TTR - On-Board

59

TTR

TTR - Selection Guide

		On-Board									Trackside		de	Subs	tation			
	Main	Main		Auxiliany	Propul-	Energy	SEC	ONDARY S	YSTEM		Interfe-				Quitat	Package	Product	Nominal
	circuit breaker	rectifier	DC Link	inverter	sion inverter	measure- ment	Lighting / plugs	HVAC	Doors Control	Battery Charger	rence measure- ment	Points	Relays	Signaling	gear	represented on page n°	Solution	Range
																46-47	LT 4000-S family	3300-4000 A
																45-46-47	LTC family	350-1000 A
Z																44-45	LAC 300-S	130-400 A
ш																44	LF 205-S family	100-200 A
Σ																44	LF 305-S family	300 A
Ш																45	LF 505-S family	500 A
																46	LF 1005-S family	1000 A
S S																47	LF 2005-S family	2000 A
\triangleleft																46	HAR family	1000 A
ш																46-47	HTC family	1000-3000 A
Σ																46-47	ITC family	2000-4000 A
\vdash																52-53	HAZ family	4000-20000 A
Z											 							
Ш											 							2 × 1200 A 1500 A
			•													50	CD family	2 to 10 A differential
											•					51	RA family	on 1000 to 4000 A DC
0																44	LA 25-NP family	0.4-25 A
																52	PCM family	5-10-20-30 A
Ш ()																54	LV 25-P family	10-1500 V
ΓĂ																55	CV 3-Voltage family	140-1400 V
																54-55	DVL Voltage family	50-2000 V
\geq																54-55	DV-Voltage family	1000-4200 V
JQ																57	EM4T II	
																50	DI (Shunt Isolator)	30-200 mV
Ш																		

LTC model in circuit breaker. Picture provided by courtesy of Sécheron.

LF 205 models in auxiliary inverter. Picture provided by courtesy of SMA.

LV 25-P/SP5 model in auxiliary inverter.

TTR

TTR - Selection Guide

LAC 300-S/SP1 model in auxiliary inverter.

TTR

*I*_{PN} = 12.5 A ... 4000 A

HIP

	I _{PN} A _{DC}	I _{PN} A _{RMS}	I _P A	Technology	U _c V	V _{out} I _{out} @ I _{PN} (DC)	BW kHz Note j)	E∟ Linearity (ppm) Note i) k)	I _{oE} V _{OE} Offset (ppm) Note k) I)	Noise (RMS) (ppm) (DC-100Hz) Notek)
	12.5	8.8	± 12.5	Fluxgate IT	± 15	50 mA	DC-500 (3dB)	4	500	0.5
	60	42	± 60	Fluxgate IT	± 15	100 mA	DC-800 (3dB)	20	250	1
cers	200	141	± 200	Fluxgate IT	± 15	200 mA	DC-500 (3dB)	3	80	1
npsı	300	300	± 450	Fluxgate IT	± 15	150 mA	DC-100 (-3dB)	10	666	N/A
Trar	400	282	± 400	Fluxgate IT	± 15	200 mA	DC-500 (3dB)	3	40	0.5
Current	400	400	± 900	Fluxgate IT	± 15	266.66 mA	DC-200 ^{m)} (3dB)	1	10	0.017 (0.125Hz-1kHz)
:/AC	600	424	± 600	Fluxgate IT	± 15	400 mA	DC-300 (3dB)	1.5	15	0.3
∍ DC	700	495	± 700	Fluxgate IT	± 15	400 mA	DC-100 (3dB)	3	50	0.5
alon€	700	495	± 700	Fluxgate IT	± 15	400 mA	DC-100 (3dB)	3	50	1
and-a	700	495	± 700	Fluxgate IT	± 15	10 V	DC-100 (3dB)	30	60	2
Sta	900	636	± 900	Fluxgate IT	± 15	600 mA	DC-300 (3dB)	1	10	0.2
	1000	707	± 1000	Fluxgate IT	± 15	1 A	DC-500 (3dB)	3	50	N/A
	4000	4000	± 12000	Fluxgate IT	± 24	1.6 A	DC-50 ⁿ⁾ (1dB)	100	62.5	125 (0.1Hz-10kHz)

									<u> </u>	P Fluxgate
Noise (RMS)	TCI _{oe} TCV _{oe}	T _A		Mour	nting	Åperture er (mm)	r UL	jing No	Туре	Features
(DC- 50kHz) Note k)	(ppm/K) Note k)	°C	PCB	On-board Panel	Measuring head + 19" rack electronic	Busbar , Diamet	UR c	Packaç	Type	Teatores
10 (DC-100kHz)	2	10+45	•			Integrated		94	ITN 12-P	Metal housing for high immunity against external influence
15	2.5	10+50		•		26		95	IT 60-S	
15	2	10+50		٠		26		95	IT 200-S	
N/A	6.66	-40+85		•		21.5		96	ITB 300-S	
8	1	10+50		•		26		95	IT 400-S	
0.006 (1kHz-30kHz)	0.3	10+50		•		Integrated busbar 19 mm diameter		97	ITL 900-T	
15 (DC-100kHz)	0.5	10+50		•		30		98	ITN 600-S	
6	0.5	10+50		•		30		99	IT 700-S	
16	0.5	10+50		•		30		100	IT 700-SPR	Programmable from 80 A in step of 10 A
10	4	10+50		•		30		99	IT 700-SB	
10	0.3	10+50		•		30		99	ITN 900-S	
6	0.5	10+50		•		30		101	IT 1000-S/SP1	High bandwidth
125 (0.1Hz-10kHz)	1.38	-40+70		•		268		74	ITL 4000-S	

94

ЧIР

95

96

98

97

Notes:

- i) Linearity measured at DC
- j) Bandwidth is measured under small signal conditions amplitude of 0.5% $I_{\rm PN}$ (DC)

(100

- k) All ppm figures refer to V_{out} or $I_{out} @ I_{PN}$ (DC) except for ITL 900–T where it refers to I_{00T} = 600 mA
- I) Electrical offset current + self magnetization + effect of earth magnetic field @ $T_A = +25 \text{ °C}$
- m) Small signal 5% of $I_{\rm PN}$ (DC), 32 $\rm A_{\rm RMS}$
- n) Small signal 40 A_{RMS}
- o) Bandwidth is measured under small signal conditions amplitude of 1% $I_{\rm PN}$ (DC)
- N/A : Not Available

(74)

*I*_{PN} = 40 A ... 24000 A

HIP

	I _{PN} A _{DC}	Ι _{ΡΝ} Α _{RMS}	I _P A	Technology	U _c V	V _{out} I _{out} @ I _{PN} (DC)	BW kHz Note j)	E _L Linearity (ppm) Note i) k)	I _{oe} V _{OE} Offset (ppm) Note k) I)	Noise (RMS) (ppm) (DC-100Hz) Note k)
	600	424	± 600	Fluxgate IT	100-240 VAC - 50/60 Hz	1 A	DC-500 °) (3dB)	1	2	11 (DC-10kHz)
	600	424	± 600	Fluxgate IT	100-240 VAC - 50/60 Hz	10 V	DC-300 °) (3dB)	10	3	8 (DC-10kHz)
ers	2000	1414	± 2000	Fluxgate IT	100-240 VAC - 50/60 Hz	2 A	DC-300 °) (3dB)	2	2	3 (DC-10kHz)
sduce	2000	1414	± 2000	Fluxgate IT	100-240 VAC - 50/60 Hz	10 V	DC-300 °) (3dB)	11	3	3 (DC-10kHz)
it Trans	2000	1414	± 2000	Fluxgate IT	100-240 VAC - 50/60 Hz	1 A	DC-80 °) (3dB)	2	2	7 (DC-10kHz)
Curren	2000	1414	± 2000	Fluxgate IT	100-240 VAC - 50/60 Hz	10 V	DC-80 °) (3dB)	11	3	2 (DC-10kHz)
/AC	5000	3535	± 5000	Fluxgate IT	100-240 VAC - 50/60 Hz	2 A	DC-80 °) (3dB)	3	2	2.5 (DC-10kHz)
n DC	5000	3535	± 5000	Fluxgate IT	100-240 VAC - 50/60 Hz	10 V	DC-80 °) (3dB)	11	3	2.5 (DC-10kHz)
/sten	10000	7070	± 10000	Fluxgate IT	100-240 VAC - 50/60 Hz	2 A	DC-20 °) (3dB)	5	2	8 (DC-10kHz)
ck Sy	10000	7070	± 10000	Fluxgate IT	100-240 VAC - 50/60 Hz	10 V	DC-20 °) (3dB)	12	3	8 (DC-10kHz)
Ra	16000	11314	± 16000	Fluxgate IT	100-240 VAC - 50/60 Hz	2 A	DC-3 °) (3dB)	6	2	8 (DC-10kHz)
	16000	11314	± 16000	Fluxgate IT	100-240 VAC - 50/60 Hz	10 V	DC-3 °) (3dB)	12	3	8 (DC-10kHz)
	24000	16970	± 24000	Fluxgate IT	100-240 VAC - 50/60 Hz	3 A	DC-2 °) (3dB)	6	2	8 (DC-10kHz)

									<u> </u>	P Fluxgate	
Noise (RMS)	TCI _{oe} TCV _{oe}	T _A		Mounti	ng	Aperture er (mm)	sr UL	jing No	Type	Features	
(DC-50kHz) Note k)	(ppm/K) Note k)	°C	PCB	On-board Panel	Measuring head + 19" rack electronic	Busbar , Diamet	URc	Packaç	Type		
28 (DC-100kHz)	0.1	0+55 Head +10+40 Elec.			•	25.4		102 + 103	ITZ 600-SPR	Programmable by steps of 20 A from 40 A to 620 A	
60 (DC-100kHz)	0.3	0+55 Head +10+40 Elec.			•	25.4		102 + 103	ITZ 600-SBPR	Programmable by steps of 20 A from 40 A to 620 A	
27 (DC-100kHz)	0.1	0+55 Head +10+40 Elec.			•	50		102 + 104	IT 2000-S		
60 (DC-100kHz)	0.3	0+55 Head +10+40 Elec.			•	50		102 + 104	IT 2000-SB		
42 (DC-100kHz)	0.1	0+55 Head +10+40 Elec.			•	50		102 + 104	IT 2000-SPR	Programmable by steps of 125 A from 125 A to 2000 A	
60 (DC-100kHz)	0.3	0+55 Head +10+40 Elec.			•	50		102 + 104	IT 2000-SBPR	Programmable by steps of 125 A from 125 A to 2000 A	
20 (DC-100kHz)	0.1	0+55 Head +10+40 Elec.			•	140.3		102 + 105	IT 5000-S		
60 (DC-100kHz)	0.3	0+55 Head +10+40 Elec.			•	140.3		102 + 105	IT 5000-SB		
20 (DC-100kHz)	0.1	0+55 Head +10+40 Elec.			•	100		102 + 106	IT 10000-S		
60 (DC-100kHz)	0.3	0+55 Head +10+40 Elec.			•	100		102 + 106	IT 10000-SB		
20 (DC-100kHz)	0.1	0+55 Head +10+40 Elec.			•	150.3		102 + 107	IT 16000-S		
60 (DC-100kHz)	0.3	0+55 Head +10+40 Elec.			•	150.3		102 + 107	IT 16000-SB		
20 (DC-100kHz)	0.1	0+55 Head +10+40 Elec.			•	150.3		102 + 107	IT 24000-S		

(107)

106

Notes:

- i) Linearity measured at DC
- j) Bandwidth is measured under small signal conditions amplitude of 0.5% $I_{\rm PN}$ (DC)
- k) All ppm figures refer to V_{out} or $I_{out} @ I_{PN}$ (DC) except for ITL 900–T where it refers to $I_{0UT} = 600 \text{ mA}$
- I) Electrical offset current + self magnetization + effect of earth magnetic field @ $T_A = +25 \text{ °C}$
- m) Small signal 5% of $I_{\rm PN}$ (DC), 32 A_{\rm RMS}
- n) Small signal 40 $\rm A_{\rm \tiny RMS}$
- o) Bandwidth is measured under small signal conditions amplitude of 1% $I_{\rm PN}$ (DC)
 - 64

ΗР

ΗР

TZ ULTRASTAN

AUTOMOTIVE

In the automotive market, LEM works with all the major car manufacturers and Tier-1 suppliers in the world, and supplies galvanically-isolated electronic transducers that measure electrical parameters in battery-management and motor-control applications.

The ever more stringent requirements for energy efficiency and reduced CO2 emissions lead car manufacturers to increasingly depend on on-board electrical components. From electric powersteering and stop-start technologies to on-board navigation and infotainment systems, these components put an additional load on the electrical circuits and particularly the battery, making it essential to control the energy generated and consumed by the various onboard systems. In collaboration with its customers and with the help of powerful simulation techniques, LEM uses the most-appropriate technology (from Hall-cell to fluxgate) to address the specific need of measuring the currents (coulombs) entering and leaving the car's battery and/or the alternator. This allows an intelligent management of available power that leads to the increased efficiency of today's internal-combustion engines. More importantly still, the hybrid- and electric-vehicles entering the market today depend on accurate measurement of battery-pack currents to determine the available driving range and recharging strategy. LEM has the technology.

Not only must battery currents be accurately measured in hybrid- and electric-vehicles, but the electric motors driving the wheels of this new generation of automobiles also need to be precisely controlled to allow smooth operation. Electric motor phase-current sensing has been LEM's core competency since its beginning and remains today a major application for its technology. LEM has a dedicated product range for measuring phase-currents in motors and DC-DC converters essential to all hybrid- and electric-vehicles.

LEM is a key player in the new generation of automobiles, using its know-how acquired over 40 years to develop the specific technologies to measure battery and motor-phase currents that allow the car industry to meet the ever increasing requirements in energy efficiency. The following pages give you an introduction into LEM's technology for automotive applications.

HC2F model in inverter.

- High-voltage battery
- 2 Vehicle control unit
- 3 Charger
- 4 Motor controller
- Electric motor and transaxle
- 6 DC/DC converter
- Electric power steering

Automotive Applications Overview

A HAH1DR - HAH3 - HC2 - HC5 - HC6 - CKSR B DHAB - HAH1BV - CAB C CDT FHS (dashboard)

Automotive Selection Guide

*** Guaranteed error for leakage current detection

AUTOMOTIVE

68

AUTOMOTIVE

LEM's Quality & Standards

LEM is dedicated to deliver products meeting the highest quality standards.

These levels of quality may differ according to the application as well as the necessary standards to comply with.

This quality has to be reached, maintained and constantly improved for both our products and services. The different LEM design and production centers around the world are ISO/TS 16949, ISO 9001 and/or ISO 14001 certified.

LEM SWITZERLAND	ISO/TS 16949: 2009 ISO 14001: 2004 ISO 9001: 2008 IRIS: 2009
LEM electronics (CHINA) Co, Ltd	ISO 9001: 2008 ISO/TS 16949: 2009 ISO 14001: 2004 IRIS: 2009
LEM Japan	ISO 9001: 2008 ISO 14001: 2004
TVELEM (RUSSIA)	ISO 9001: 2008

Several quality tools have been implemented at LEM to assess and analyze its performances. LEM utilizes this information to take the necessary corrective actions to remain a responsive player in the market.

The most representative are:

- DPT FMEA (Design, Process & Tool Failure Mode Effect Analysis) tool used preventively to:
- o identify the risks and the root causes related to the product, the process or the machinery

o set up the corrective actions

- Control Plan: Description of checks and monitoring actions executed along the production process
- Cpk R&R (Capability for Processes & Measurement Systems):
 - o Cpk: Statistical tool used to evaluate the ability of a production procedure to maintain the accuracy within a specified tolerance
 - R&R: Repeatability and Reproducibility: Tool to monitor the accuracy of a measurement device within a predetermined tolerance
- QOS 8D (Quality Operating System Eight Disciplines):
 - o 8D: Problem solving process used to identify and eliminate the recurrence of quality issues
 - o QOS: System used to solve problems
- IPQ (Interactive Purchase Questionnaire): Tool aimed at involving the supplier in the quality of the purchased parts and spare parts.

In addition to these quality programs, and since 2002, LEM embraces Six Sigma as its methodology in pursuit of business excellence. The main goal is to create an environment in which anything less than Six Sigma quality is unacceptable.

Key Six Sigma Statistics						
Company Status	Sigma Level	Defect Free	Defects Per Million			
Non	2	65%	308,537			
Competitive	3	93%	66,807			
Industry Average	4	99.4%	6,210			
Werage	5	99.976%	233			
World Class	6	99.9997%	3.4			
Source: Six Sigma Academy, Cambridge Management Consulting						

LEM's Standards

LEM transducers for Industry and traction are designed and tested according to recognized worldwide standards.

CE marking is a guarantee that the product complies with the European EMC directive 2004/108/EEC and low voltage directive and therefore warrants the electromagnetic compatibility of the transducers. Traction transducers comply to the EN 50121-3-2 standard (Railway EMC standard).

UL is used as a reference to define the flammability of the materials used for LEM products (UL94V0)

as well as the NFF 16101 and 16102 standards fot the fire/smoke materials classification when transducers dedicated for traction applications.

LEM is currently UL recognized for key products. You can consult the UL website to get the updated list of recognized models at www.UL.com.

The EN 50178 standard dedicated to "Electronic Equipment for use in power installations" in industrial applications is our standard of reference for electrical, environmental and mechanical parameters.

It guarantees the overall performances of our products in industrial environments.

All of the LEM Industry products are designed according to the EN 50178 standard except if dedicated to railway applications.

In that case, the EN 50155 standard dedicated to "Electronic Equipment used on Rolling stock" in railway applications is our standard of reference for electrical, environmental and mechanical parameters.

It guarantees then the overall performances of our products in railway environments.

All of the LEM traction products are designed according to the $\underline{\sf EN}$ 50155 standard.

The individual data sheets precisely specify the applicable standards, approvals and recognitions for individual products.

The EN 50178 standard is also used as reference to design the creepage and clearance distances for the transducers versus the needed insulation levels (rated insulation voltage) and the conditions of use. The rated insulation voltage level for transducers in "industrial" applications, is defined according to several criteria listed under the EN 50178 standard and IEC 61010-1 standard ("Safety requirements for electrical equipment for measurement, control and laboratory use"). Some criteria are dependent on the transducer itself when the others are linked to the application.

These criteria are the following:

- Clearance distance (the shortest distance in air between two conductive parts)
- Creepage distance (the shortest distance along the surface of the insulating material between two conductive parts)
- Pollution degree (application specific this is a way to classify the micro-environmental conditions having effect on the insulation)
- Over-voltage category (application specific characterizes the exposure of the equipment to over-voltages)
- Comparative Tracking Index (CTI linked to the kind of material used for the insulated material) leading to a classification over different Insulating Material groups
- Simple (Basic) or Reinforced isolation need

LEM follows this thought process for all the transducer designs:

Example: LTSP 25-NP, current transducer in a motor drive.

Conditions of use:

Creepage distance (on case): 12.3 mm

Clearance distance (on PCB, footprint as above figure as an example): 6.2 mm

CTI: 175 V (group IIIa)

Over-voltage category: III

Pollution Degree: 2

Basic or Single insulation

According to EN 50178 and IEC 61010-1 standards:

With clearance distance of 6.2 mm and PD2 and OV III, the rated insulation voltage is of 600 $V_{\mbox{\tiny PMS}}.$

With a creepage distance of 12.3 mm and PD2 and CTI of 175 V (group IIIa), this leads to a possible rated insulation voltage of $1000 V_{\text{RMS}}$.

70

QUALITY

LEM's Quality & Standards

In conclusion, the possible rated insulation voltage, in these conditions of use, is $600\,V_{\rm RMS}$ (the lowest value given by the both results from the creepage and clearance distances).

Reinforced insulation

- Let's look at the reinforced insulation for the same creepage and clearance distances as previously defined:
- When looking at dimensioning reinforced insulation, from the clearance distance point of view, with OV III and according to EN 50178 and IEC 61010-1 standards, the rated insulation voltage is given whatever the pollution degree at 300 V_{RMS} .
- From the creepage distance point of view, when dimensioning reinforced insulation, the creepage distance taken into account has to be the real creepage distance divided by 2, that is to say 12.3/2 = 6.15 mm.
- With that value, and PD2 and CTI of 175 V (group IIIa), this leads to a possible rated insulation voltage of 500 $\rm V_{RMS}.$
- In conclusion, the possible reinforced rated insulation voltage, in these conditions of use, is of 300 $\rm V_{RMS}$ (the lowest value given by the both results from the creepage and clearance distances).
- For railway applications, the EN 50124-1 ("Basic requirements - Clearances and creepage distances for all electrical and electronic equipment") standard is used as reference to design the creepage and clearance distances for the transducers versus the needed insulation levels (rated insulation voltage) and the conditions of use.
- The rated insulation voltage level allowed by a transducer intended to be used in an application classified as being "Railway", is defined according to several criteria listed under the EN 50124-1 standard.
- These criteria are the same as per the EN 50178 (seen previously) and are the following:
- Clearance distance,
- Creepage distance,
- Pollution degree,
- Over-voltage category,
- Comparative Tracking Index (CTI),
- Simple (Basic) or Reinforced isolation need.

LEM follows this thought process for the railway transducer designs:

- Example: LTC 600-S, current transducer in an propulsion inverter
- Conditions of use:
- Creepage distance: 66.70 mm,
- Clearance distance: 45.90 mm,
- CTI: 600 V (group I),
- Over-voltage category: II,
- Pollution Degree: 3.

LEM's Quality & Standards

Basic or Single insulation:

According to EN 50124-1 standard: With clearance distance of 45.90 mm and PD3, $U_{\rm Ni}$ (Rated impulse voltage) = 30 kV. With $U_{\rm Ni}$ = 30 kV & OV II, the rated insulation voltage (AC or DC) called " $U_{\rm Nm}$ " can be from >= 6.5 up to < 8.3 kV. With a creepage distance of 66.70 mm and PD3 and CTI of 600 V (group I), it is allowed to have 12.5 mm/kV, leading to a possible rated insulation voltage $U_{\rm Nm}$ of 5.336 kV. In conclusion, the possible rated insulation voltage, $U_{\rm Nm}$, in these conditions of use, is of 5.336 kV (the lowest value given by the both results from the creepage and clearance distances).

Reinforced insulation:

Let's look for the reinforced insulation for the same creepage and clearance distances as previously defined:

When dimensioning reinforced insulation, from the clearance distance point of view, the rated impulse voltage, $U_{\rm Ni}$, shall be 160% of the rated impulse voltage required for basic insulation.

The clearance distance of 45.90 mm is already designed and then, we look for the reinforced insulation with this distance. Reinforced $U_{\rm Ni}$ = 30 kV obtained with the clearance distance of 45.90 mm.

Basic U_{Ni} = Reinforced U_{Ni} / 1.6 = 18.75 kV.

Reinforced $U_{\rm Nm}$: From >= 3.7 up to < 4.8 kV, according to the clearance distance.

From the creepage distance point of view, when dimensioning reinforced insulation, the rated insulation voltage $U_{\rm Nm}$ shall be two times the rated insulation voltage required for the basic insulation.

With a creepage distance of 66.70 mm and PD3 and *CTI* of 600 V (group I), it is then allowed to have 25 mm/kV (2 x 12.5) vs. 12.5 mm/kV previously (for basic insulation), leading to a possible reinforced rated insulation voltage $U_{\rm Nm}$ of 2.668 kV. In conclusion, the possible reinforced rated insulation voltage $U_{\rm Nm}$, in these conditions of use, is of 2.668 kV (the

lowest value given by the both results from the creepage and clearance distances).

According to RoHS 2 directive 2011/65/EU

HAS model in converter

HAX model in windmills inverter. Picture provided by courtesy of Infineon.

QUALITY

LEM's Quality & Standards

QUALITY

VARIOUS OPTIONS FOR SECONDARY CONNECTIONS

LEM GROUP DESIGN SPECIFICATION					
LEM Subsidiary:	Con	tact: Date:			
Customer information Company : Contact person : Project name :	e-ma City Phon	ail: : Country : ne : Fax :			
Application Market Drives UPS, REU Traction High precision Energy solutions Automotive Utilization voltage current power other: Function control differential m. ground fault detection other:					
Electrical & Environmental characteristic	CS	Transducer reference (if relevant):			
Signal to measure		Static and intrinsic values			
Type of signal: $\Box AC sin \Box DC$		Global accuracy (% of nominal value, @ 25 ℃)			
square pulse other (specify) bidirectional unidirectional	ctional	Overall accuracy over operating temperature range %			
Nominal value:	rms	Maximum offset @ 25 °C: mA/mV			
Measuring range:	pk	Dielectric strength:			
(picase provide a graph)	rmo	OV category: Pollution degree:			
Peak: Duration:	pk s	Rated Insulation Voltage: Single insulation: V Reinforced insulation: V			
Non measured overload: (to withstand) Frequency: duration:	pk Hz ms	Primary/secondary (50 Hz/ 1 mn): kV rms Screen/secondary: kV rms			
di/dt to be followed: Bandwidth:	A/µs kHz	Impulse withstand voltage kV rms Partial discharge level @ 10 pC: kV			
Operating frequency: Ripple: Ripple frequency:	Hz pk-pk Hz	Preferred output: mA/A mV/A mA/V mV/V other (specify)			
dv/dt applied on primary circuit:	kV/µs	Measuring resistance fi			
Power supply: V ±	%	Turn ratio:			
bipolar 🗌 unipola	ar	Temperature range Operating: C to C Storage: C to C			
Mechanical requirements					
Maximum dimensions required: L mm x W mm x H mm Mounting on: PCB Panel Output terminals: PCB Faston Threaded studs M_ Cable					
Primary connection: through hole: busbar connection: busbar connection: connection:					
Applicable standards: industrial					
traction					
□ IEC 61010-1 other					
UL Certified UL508/UL60947		Other UL standard (if different than UL508)			

Ν	SP	EC	IF	ICA [®]	ΤI	0	N	
---	----	----	----	------------------	----	---	---	--

Selection parameters

LEM provides the technical solution for current and voltage measurements from a wide range of possibilities for various parameters, not only electrical but also mechanical.

1. Mechanical features:

• A wide range of transducers to be through hole PCB mounted, surface mounted or panel mounted with an aperture or an integrated primary conductor or both.

Multiple mounting possibilities

Models such as the LF series offer several horizontal or vertical mounting possibilities, in very compact packages, allowing the user to select the most appropriate transducer mounting configuration for the application.

• Various shapes and sizes

LEM's ASICs (Application Specific Integrated Circuit) used in LEM transducers have been a great contributor towards the miniaturization of the transducers volumes thanks to the integration of the complete electronics onto a unique chip.

Various mechanical designs are proposed for various series covering even the same current ranges to answer to different mounting constraints in applications.

Need to mount a current transducer without disconnecting the primary conductor in an existing application? This is a job for the HTR or HOP devices in industrial applications or PCM models in trackside applications. Indeed, they are able to be opened and to be clamped onto the primary conductor. They're perfect for retrofit applications without disconnection.

2. Electrical features:

Accuracy

Accuracy is a fundamental parameter in electrical systems. Selecting the right transducer is often a tradeoff between several parameters: accuracy, frequency response, weight, size, costs, etc.

The measuring accuracy for LEM transducers depends primarily on the operating principle.

Open Loop transducers are calibrated during the manufacturing process and typically provide accuracy better than 2% of the nominal range at 25 °C. For additional offset and gain drift parameters, please refer to corresponding datasheets.

New ASIC based Open Loop transducers are being developed to provide improvement in gain and offset drift over traditional Open Loop transducers but also to reach an accuracy performance closer to Closed Loop models.

Closed Loop current and voltage transducers provide excellent accuracy at 25 °C, in general below 1% of the nominal range, and a reduced error over the specified temperature range, thanks to their balanced flux operation. Fluxgate based transducers are high performance transducers with exceptional accuracy levels over their operating temperature range.

• Supply voltage and consumption

Most of the transducers are working for bipolar measurements using a bipolar supply voltage.

 $U_{c} = + / - 12 \text{ V}; + / - 15 \text{ V}; + / - 24 \text{ V}; \dots$

However, due to power electronics evolution, and thanks to ASIC emergence, a large range of transducers are designed for bipolar measurements with a single unipolar power supply with respect to ground (0 V) : $U_{\rm C}$ = + 5 V or + 3.3 V.

This is a great factor of low power consumption.

Power consumption is linked to the kind of technology used for the transducer. For instance, the following typical currents are consumed versus the technologies used (this is an important parameter to take into account at the design phase):

Current consumption $I_{\rm C}$ (mA)

Reference access

Models powered with + 5 V or + 3.3 V, mostly using an ASIC, can provide their internal voltage reference on an external pin or receive an external voltage reference to share it with microcontrollers or A/D converters for perfect communication.

Performances such as offset, gain and offset drifts can be improved by communicating with the microcontroller directly. Some special ASICs have been designed by LEM to answer to that specific market requirement. Indeed ASICs' technology allows some specific functions and improved performances such as better offset and gain drifts.

Frequency response

The frequency response of a transducer is also primarily linked to the embedded technology.

Some key factors affecting the bandwidth performance, for the different technologies that LEM offers, are for example:

- Open Loop: Core geometry, number and thickness of the laminations, type of core material and Hall effect chip, etc directly impact the bandwidth. However use of the latest generation of ASICs has substantially improved that performance.
- Closed Loop, Fluxgate types: Coupling between primary and secondary (depending on the mechanical and magnetic circuit designs) and the core material have a large influence on the bandwidth.
- For the DV, DI, DVL-Type and PRiME technologies, it is a question of electronic limitation of the device output.
- For Closed Loop Hall effect voltage transducers, bandwidth is limited due to the primary inductance. Please refer to the response time in the individual data sheets.

Bandwidth (kHz)

Operating Temperature Range

The operating temperature range is based on the materials, the construction of the selected transducer, and the technology used. The minimum temperatures are typically -40, -25, or -10° C while the maximums are +50, +70, +85, or $+105^{\circ}$ C.

LEM offers a comprehensive range of transducers optimized for industrial operating environments.

76

SELECTION PARAMETERS

Selection Parameters

The transducers included in this catalogue have various temperature specifications related to their global accuracy over a specific operating temperature range. LEM can also provide transducers with operating temperature ranges outside the listed selection to fulfill a specific requirement.

Output signal

LEM transducers are available with different output signals, mainly depending on the operation principle and the application.

Closed Loop, fluxgate IT & ITC, DV & DVL & DI, current transformer type transducers generally provide a current output, proportional to the primary signal. The user can obtain a voltage signal by defining a burden resistor within the limits specified in the datasheet.

Open Loop, fluxgate C & CAS & CTSR types, PRIME transducers directly provide an amplified voltage signal proportional to the primary current.

In the case of single supply voltage, the output signal varies around a nonzero reference.

Some transducers series offer (regardless of the technology) specific output signals, adapted to the kind applications (trackside, process automation...), such as :

- Standard output signals (e.g. 0-5 VDC, 0-10 VDC or 4-20 mA)
- But also, RMS or T-RMS ("True Root Mean Square") calculation to accurately measure current magnitudes, even on non-linear loads or in noisy environments.

• Voltage measurement

LEM provides a wide selection of solutions for Galvanically isolated voltage measurement, at various levels of performance.

There are two different options for voltage measurement:

- User specified primary resistor:
- The user connects a primary resistor in series with the transducer. The value of the primary resistor R_1 is selected according to the voltage to be measured. This approach allows for maximum flexibility.
- Integrated primary resistor: The integrated primary resistor R₁ predefines the nominal measuring voltage of the transducer.

LEM offers a wide selection of nominal voltage levels to cover a variety of applications.

DRAWINGS

80

Dimension Drawings All dimensions are in mm

Dimension Drawings

All dimensions are in mm 46 LF 205-P/SP1 47

DRAWINGS

82

84

DRAWINGS

86

All dimensions are in mm

Dimension Drawings All dimensions are in mm 1: Current Auton 2: No Connection 3: Normal Operation Stat 4: Ground 5: -Vic 6: Current Output 7: No Connection 8: Normal Operation Stat 8: +Vic 5 Ô ITZ 600–SPR,–SBPR Ø28.2 M 🛙 25,4 MIN **B** 1 100 • 0.

DRAWINGS

88

ai l

DRAWINGS

90

LTC 600-SFC, LTC 1000-SFC

120

Hall effect chip location

LTC 600–T, LTC 1000–T

-80-

æ

92

93

DRAWINGS

94

All dimensions are in mm Hall effect chip location AP 50...400 B420L APR 50...400 B420L 163 164 AKR 750/2000 C420L J R 500...2000 B5/B10/B42 DK 20...100 C420 I 77.3 20.3)H 500...2000 B 420L E EM4T II — Ø 6,2 mm O Ø 0

69 mm

A C transducers using the principle of isolation amplifier transducers using the principle of fluxgate compensation D : digital transducers F : transducers using the detector of fields transducers using the Hall effect without magnetic compensation Н 10 compensation current transducers with high accuracy 1 transducers using the Hall effect with magnetic compensation 1 R transducers using the principle of the Rogowski loop Т transducers using the simple transformer effect A or AK or AL or AS 1) or AT or AX or AZ or AXC with rectangular laminated magnetic circuit AR or AW or AC or X or XN with rectangular laminated magnetic circuit AF AH vertical mounting AIS, XS, ASS, AFS rectangular laminated magnetic circuit + unidirectional power supply + reference access ASR, KSR, LSR rectangular magnetic circuit + hybrid AY double toroidal core В С apparent printed circuit D differential measurement HS F (FHS): Minisens, SO8 transducer flat design F FWS shunt isolator MS Ο opening laminated magnetic circuit OP TC transducer reserved for the traction TD double measurement TKS, TFS TP, TO, TN, TZ, TL, T, TA, TB, TY toroidal core opening core TR TS core + unipolar power supply TSR, TSP core + unipolar power supply + reference access TT triple measurement V, VL voltage measurement compact hybrid for PCB mounting Y - current transducer : rms amperes - voltage tranducer : rms amperes-turns 0000 : Nominal Voltage (-1000 meaning 1000 V, with built in primary resistor R1) - AW/2 : particular type of voltage transducer multiple range Ν Ρ assembly on printed circuit S(I) with through-hole for primary conductor surface mounted SM with incorporated primary busbar T(I) rities (1or 2 optional characters or figures) bipolar output voltage В BI bipolar current output С fastening kit without bus bar D can be disassembled with mounting feet FC with mounting feet + fastening kit Р assembly on printed circuit PR programmable R rms output RI rms current output RS serial output RU rms voltage output Differing from the standard product... /SPXX HLSR 10-SM/... LTC 600-SF/...

96

DRAWINGS

PRODUCT CODING / Industrial & Traction Transducers

with rectangular laminated magnetic circuit and flat housing

rectangular magnetic circuit + unipolar power supply + reference access

Hall effect without magnetic compensation; magnetic concentrators + unidirectional power supply + reference access. When used with

flat mounting + mounting on wire + unidirectional power supply

surface mounted device + unidirectional power supply + reference access using ASIC providing multitude of options + unidirectional power supply + reference access

core, flat case + unidirectional power supply + reference access

- AW/2/200: Nominal voltage for AW/2 design (200 meaning 200V with built in primary resistor R1)

1) When used with L (LAS): current transducer with secondary winding and unipolar power supply using Eta technology

When used with C (CAS): current transducer with rectangular magnetic circuit + unipolar power supply

When used with H (HAS): current transducer with rectangular magnetic circuit using O/L Hall effect technology

Symbols and Terms

BW	Frequency bandwidth	R _P	Primary coil resista
CTI	Comparative Tracking Index	R _s	Secondary coil resis
d _{CI}	Clearance distance	T _A	Ambient operating
<i>d</i> _{Cp}	Creepage distance	<i>TCR</i> _{IM}	Temperature coeffic
G	Sensitivity	TCI _{OUT}	Temperature coeffic
$\varepsilon_{\rm L}$	Linearity error	<i>TCI</i> _{OE}	Temperature coeffic
Ic	Current consumption	TCV _{OUT}	Temperature coeffic
I_{0}	Zero offset current, $T_{\rm A} = 25 {\rm ^{\circ}C}$	TCV _{OE}	Temperature coeffic
I	Electrical offset current, $T_{\rm A} = 25 {\rm °C}$	<i>TCV</i> _{Ref}	Temperature coeffic
I _{om}	Residual current @ $I_{\rm P} = 0$ after an overload	TCV _{OUT} /V _{Ref}	Temperature coeffic
I _{ot}	Thermal drift of offset current	TCG	Temperature coeffic
I	Max. allowable output current at $I_{\rm PN}$ or $V_{\rm PN}$	ţ	Response time
I _{PN}	Primary nominal RMS current	t _{ra}	Reaction time
$I_{ m p}$	Primary current	U _c	Supply voltage
I _{PM}	Primary current, measuring range	U _b	Rated isolation voltag
I _{PR}	Primary residual current	<i>U</i> _d	RMS voltage for AC
Is	Secondary current	U _e	RMS voltage for par
$I_{\rm SN}$	Secondary nominal RMS current	U _{Nm}	Rated insulation volta
IPxx	Protection degree	U _w	Impulse withstand
K _N	Turns ratio	V _H	Hall Voltage
М	Mutual inductance	<i>V</i> ₀	Zero offset voltage,
N	Number of turns	V _{oe}	Electrical offset volta
N _p	Number of primary turns	V _{om}	Residual voltage @
N _s	Number of secondary turns	V _{ot}	Temperature variati
N _p /N _s	Turns ratio	V _{OUT}	Output voltage at \pm
N _T	Number of turns (test winding)	V _{pn}	Primary nominal RM
R _{IM}	Internal measuring resistance	V _P	Primary voltage, me
R	Load resistance	V _{Ref}	Reference voltage
R _{M min}	Minimum measuring resistance at $T_{\rm A max}$	X	Typical accuracy, T
R _{M max}	Maximum measuring resistance at $T_{\rm Amax}$	X _G	Global accuracy @
R.	Primary resistor (voltage transducer)		

5 Year Warranty on LEM Transducers

- We design and manufacture high quality and highly reliable products for our customers all over the world.
- We have delivered several million current and voltage transducers since 1972 and most of them are still being used today for traction vehicles, industrial motor drives, UPS systems and many other applications requiring high quality standards.
- The warranty granted on LEM transducers is for a period of 5 years (60 months) from the date of their delivery (not applicable to Energy-meter product family for traction and automotive transducers where the warranty period is 2 years).
- During this period LEM shall replace or repair all defective parts at its' cost (provided the defect is due to defective material or workmanship).
- Additional claims as well as claims for the compensation of damages, which do not occur on the delivered material itself, are not covered by this warranty.
- All defects must be notified to LEM immediately and faulty material must be returned to the factory along with a description of the defect.
 - Warranty repairs and or replacements are carried out at LEM's discretion.
 - The customer bears the transport costs. An extension of the warranty period following repairs undertaken under warranty cannot be granted.
- The warranty becomes invalid if the buyer has modified or repaired, or has had repaired by a third party the material without LEM's written consent.
- The warranty does not cover any damage caused by incorrect conditions of useand cases of force majeure.
 - No responsibility will apply except legal requirements regarding product liability. The warranty explicitly excludes all claims exceeding the above conditions.

Geneva, 21 June 2011

François Gabella CEO LEM

Industry Current and Voltage Transducers, Edition 2013, Published by LEM International SA © LEM International SA, Switzerland 2013, e-mail: sro@lem.com

All Rights reserved

The paper of this publication is produced with pulp bleached without chlorine, neutral sized and non-aging.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits

implemented with components or assemblies. For more details see the available data sheets

Terms of delivery and rights to change design or specifications are reserved.

98

SYMBOLS

June 2011/Version 1

-EM International Sales Representatives

East Middle Europe

Bosnia, Croata, Serbia and Slovenia Proteus Electric S.r.I. Via di Noghere 94/1 I-34147 Muggia-Aquilinia Tel. +39 040 23 21 88 Fax +39 040 23 24 40 o meli dina fobiani@ e-mail: dino.fabiani@ proteuselectric.it

BeNeLux LEM Belgium sprl-bvba Egelantierlaan, 2 B-1851 Humbeek Tel. : +32 22 70 30 84 Fax : +32 22 70 30 85

e-mail : lbe@lem.com

Bosnia, Croatia,

Austria and CEE Eltrotex HandelsgesmbH Grundauerweg 7 A-2500 Baden

Tel. +43-2252-47040-0 Fax +43-2252-47040-7

Belarus and Baltic

Office Austria

BeNeLux

-mail: office@eltrotex.at

LEM Deutschland GmbH,

Office Austria Concorde Business Park 2/F/6 A-2320 Schwechat Tel. +43 1 706 56 14-30 Fax +43 1 706 56 14-30 e-mail: tbu@lem.com

Particle and Bartic DACPOL Sp. z o.o. ul. Pulawska 34 PL-05-500 Piaseczno Tel. +48 22 7035100 Fax +48 22 7035101 e-mail: dacpol@dacpol.com.pl

Bulgaria, Hungary Ineltron GmbH Hugenottenstr. 30 D-61381 Friedrichsdorf Tel.: +36 70 3666055 Tel.: +49 (0)6172 598809 Fax.:+49 (0)617275933 email: i.laszlo@ineltron.hu

Argentina

Argentina Semak S.A. Av. Belgrano 1580, 5° Piso AR-1093 BUENOS AIRES Tel. +54 11 4381 2108 Fax +54 11 4383 7420 <u>ca</u> e-mail: comex@semak.com.ar

Brazil AMDS4 Imp. Exp. e Com. de Equip. Elétricos Ltda. Rua Dr. Ulhôa Cintra, 489, Piso Superior, Centro. 13800-061-Moji Mirim-São Paulo Prozil Fazil. Tel. +55 19 3806-1950/8509 Fax +55 19 3806-8422 e-mail : jeduardo@amds4.com.br

Australia and New Zealand Fastron Technologies Pty Ltd. 25 Kingsley Close Rowville - Melbourne -Victoria 3178 Tel. +61 3 9763 5155 Fax +61 3 9763 5166 e-mail: sales@fastron.com.au China

Pacific

•

Asia

 China

 LEM Electronics (China) Co., Ltd.

 No. 28, Linhe Str. Linhe

 Industrial Development Zone

 Shunyi District, Beijing, China

 Post code : 101300

 Tel. +86 10 89 45 52 88

 Fax +86 10 80 48 43 03

 +86 10 80 48 31 20

 e-mail: bji@lem.com

LEM Electronics (China) Co., Ltd. Hefei Office, R804. Qirong Building, No. 502 Wangjiang West Road, High-tech Zone Hefei, Anhui, 230022 PR: China Tel. +86 551 530 9772 Fax +86 551 530 9773 own?lt bildiom com e-mail: bil@lem.com

Czech Republic, Slovakia PE & ED, spol. s r.o. Koblovska 101/23 CZ-71100 Ostrava Tel. +420 596 239 256 Fax +420 596 239 531 e-mail: peedova@peed.cz

Denmark Motron A/S Motron A/S Torsoevej 3 DK-8240 Risskov Tel. +47 6212 1050 Fax +47 6212 1051 e-mail: motron@motron.dk

Finland Finland ETRA Electronics Oy Lampputie 2 FI-00740 Helsinki Tel. +358 207 65 160 Fax +358 207 65 23 11 e-mail: markku.soittila@etra.fi Field Applications Engineer Mr. Pasi Leveälahti Kausantie 668, 17150 Urajärvi Tel. +358 50 5754435 Fax +358 37667 141 e-mail: pli@lem.com

France LEM France Sarl 15, avenue Galois F. 92340 Bourg-La-Reine Tel. +33 1 45 36 46 20 Fax +33 1 45 36 06 16 e-mail: lfr@lem.com

Germany LEM Deutschland GmbH Frankfurter Strasse 74 D-64521 Gross-Gerau Tel. +49 6152 9301 0 Fax +49 6152 8 46 61 e-mail: info-Ide@lem.com

Canada Ontario East Canada Ontario East Optimum Components Inc. 7750 Birchmount Road Unit 5 CAN-Markham ON L3R 0B4 Tel. +1 905 477 9393 Fax +1 905 477 6197 e-mail: mikep@optimumcomponents. com

Canada Manitoba West William P. Hall Contract Services 7045 NE 137th st. CAN-Kirkland, Washington 98034 Tel. +1 425 820 6216 Fax +1 206 390 2411

LEM Electronics (China) Co., Ltd. Shanghai Office, R510, Hualian Development Mansion, No. 728 Xinhua Road Changning District Shanghai, 200052, P.R. China Tel. +86 21 3226 0881 Fax +86 21 5258 2262

e-mail: bil@lem.com LEM Electronics (China) Co., Ltd. Shenzhen Office R1205, Liantai Mansion, Zhuzilin, H1205, Liantai Mansion, 2n02iinn, Shennan Avenue, Futian District, Shenzhen 518040 P.R. China Tel. +86 755 3334 0779 +86 755 3334 0780 e-mail: bjl@lem.com LEM Electronics (China) Co., Ltd.

Xi'an Office R703, Tower B Jinqiao International Plaza No. 50, Technology Road High-Tech District, Xi'an, Shanxi, 710075 P.R. China Tel. +86 29 8833 7168 Fax +86 29 8833 7158 e-mail: bil@lem.com

Keep in touch www.lem.com

Hauber & Graf electronics GmbH Bavaria / Baden Württemberg Höpfigheimer Str. 8 D-71711 Steinheim Tel. +49 7144 33905-00 Fax +49 7144 33905-55 e-mail: info@hg-electronics.de

Israel Ofer Levin Technological Ofer Levin Technological Application PO Box 18247 IL- Tel Aviv 611 81 Tel.+972 3 5586279 Fax +972 3 5586282 e-mail: o_teap@netvision.net.il ofer.levin@tec-apps.co.il

 Italy
 Italy

 LEM Regional Office Italy
 via V. Bellini, 7

 1-35030 Selvazzano Dentro, PD
 Tel. +39 049 805 60 60

 Fax +39 049 805 60 59
 e-mail: lit@lem.com

Norway Motron A/S Torsoevej 3 DK-8240 Risskov Tel. +47 6212 1050 Fax +47 6212 1051 e-mail: motron@motron.dk

Poland DACPOL Sp. z o.o. ul. Pulawska 34 PL-05-500 Piaseczno Tel. +48 22 7035100 Fax +48 22 7035101 e-mail: dacpol@dacpol.com.pl

South Africa South Africa Denver Technical Products Ltd. PO. Box 75810 SA-2047 Garden View Tel. +27 11 626 20 23 Fax +27 11 626 20 09 e. mell denverteel@initio.co. e-mail: denvertech@pixie.co.za

USA, Canada, Mexico LEM USA, Inc., Central Office 11665 West Bradley Road Milwaukee, WI 53224, USA Toll free: 800 236 5366 Tel. +1 414 353 0711 Fax +1 414 353 0733 e-mail: lus@lem.com

India LEM Management Services Sarl-India Branch Office Mr. Sudhir Khandekar Level 2, Connaught Place, Bund Garden Road, Pune-411001 Tel. +91 20 4014 7575 Mobile +91 98 3313 5223 e-mail: skh@lem.com e-mail: skh@lem.com GLOBETEK No.122, 27th Cross, 7th Block, Jayanagar, Bangalore-560070 INDIA Tel: +91 80 2663 5776 +91 80 2664 3375 Fax: +91 80 2653 4020 e-mail: sales@globetek.in

Japan LEM Japan K.K. 2-1-2 Nakamachi J-194-0021Machida-Tokyo Tel. +81 4 2725 8151 Fax +81 4 2728 8119 e-mail: ljp@lem.com

LEM Japan K.K. Nagoya Sales Office 1-14-24-701 Marunouchi, Naka-ku, Nagoya

Portugal QEnergia, Lda Centro Empresarial S. Sebastião Rua de S. Sebastião Lt 11 n.º 10,

Albarraque 2635-448 Rio de Mouro Portugal Tel. +351 214 309 320 Fax +351 214 309 299 e-mail: genergia@genergia.pt

Romania SYSCOM -18 Srl. Calea Plevnei 139B Sector 6 RO-060011 Bucharest Tel. +40 21 310 26 78 Fax +40 21 316 91 76 e-mail: george.barbalata@syscom18.com

Russia TVELEM. LLC, Central Office Str. Staritskoye shosse,15 170040 Tver / Russia Tel./fax: + 7 4822 655672, 73 E-mail: tvelem@lem.com

Scandinavia Scandinavia LEM Regional Office Nordic Countries Regus Tuborg Havn Tuborg Boulevard 12, 3rd 2900 Hellerup, Denmark Tel. +45 60 43 1953

Spain LEM France Sarl LEM France San 15, avenue Galois F-92340 Bourg-la-Reine Tel. +34 93 886 02 28 Fax +34 93 886 60 87 e-mail: slu@lem.com

e-mail: kck@lem.com

Sweden Sweden ADIATOR AB Hälsingegatan 40 SE-11343 Stockholm Tel. +46 8 729 1700 Fax +46 8 729 1717 e-mail: info@adiator.se

LEM USA East, Greg Parker Toll free: 800 236 5366 ext. 202 Tel. +1 414 577 4132 e-mail: gap@lem.com

LEM USA Central, Alan Garcia Toll free: 800 236 5366 ext. 200 Tel. +1 414 577 4130 e-mail: afg@lem.com

460-0002 Japan Tel. +81 52 203 8065 Fax +81 52 203 8091 e-mail: ljp@lem.com

Korea S&H TRADING Rm.302 Eopmu A-dong, Chungang Yutong, 1258, Gurobon-dong, Guro-gu, Seoul, 152-721, Korea Tel. +82 2 2686 83 46 +82 2 2613 83 45 Fax +82 2 2686 83 47 e-mail: snh@hinodekorea.co.kr Young Weo Led. Co. e-mail: snh@hinodekorea.cc Young Woo Ind. Co. #608 Penterium IT Tower, 282 Hakeui-ro, Dongan-gu, Anyang-si, Gyeonggi-do South Korea, 431-810 Tel. +82 31 266 88 57 Fax +82 31 266 88 57 e-mail: info@ygwoo.co.kr

Malaysia Malaysia ACEI Systems Sdn. Bhd. 1A & 1A-1, Lintasan Perajurit 6, Taman Perak 31400 Ipoh Perak Darul Ridzuan, Malaysia

Distributor

Switzerland SIMPEX Electronic AG Binzackerstrasse 33 CH-8622 Wetzikon Tel. +41 44 931 10 30 Fax +41 44 931 10 31 Fax +41 44 931 10 31 e-mail: contact@simpex.ch LEM International SA 8, Chemin des Aulx, PO. Box 35, CH-1228 Plan-les-Ouates Tel. +41 22 706 11 11 Fax +41 22 794 94 78 e-mail: Isa@lem.com

Özdisan Electronik Pazarlama DES Sanayi Sitesi, 104.Sok.A07 Blok N°:02 TR-34776 Y.Dudullu Umraniye / Istanbul Tel. +90 216 420 1882 Fax +90 216 466 3686 a mail: Ordisan@ozdisan.com e-mail: Ozdisan@ozdisan.com

Ukraine "SP DACPOL" Co Ltd. Snovskaya str. 20 UA-02090, KIEV, UKRAINE Tel. +380 44 501 93 44 Fax +380 44 502 64 87 e-mail: kiev@dacpol.com

United Kingdom and Eire LEM Regional Office UK A Branch of LEM Deutschland GmbH West Lancs Investment Centre Suite 10, Maple view Whitemoss Business Park Skelmersdale, Lancs WN8 9TG Tel. +44 (0)1942 388 440 Fax +44 (0)1942 388 441 e-mail: luk@lem.com

LEM USA Midwest, John Marino Toll free: 800 236 5366 ext. 138 Tel. +1 414 577 4137 e-mail: jam@lem.com

LEM USA West, Don Blankenburg Toll free: 800 236 5366 ext, 206 Tel. +1 414 577 4122 e-mail: dbl@lem.com

Tel. +60 5 547 0761/0771 Fax +60 5 547 1518 e-mail: enquiry@aceisys.com.my

Singapore Overseas Technology Center Pte Ltd Blk 1003, Unit 04-16 **Bukit Merah Central** Inno Central Inno Center RS-159836 Singapore Tel. +65 272 6077 Fax. + 65 278 2134 e-mail: info@overseastechnology.com.sg

Taiwan POWERTRONICS CO. LTD The Tapei SUN-TECH Technology Park 10th Floor, No. 205-2, Section 3, Beixin Road, Xindian City, Taipei County 23143, Taiwan, R. O. C. Tel. +886 2 7741 7000 Fax +886 2 7741 7001

e-mail: sales@powertronics.com.tw Tope Co., Ltd. 3F-4, 716 Chung Cheng Road Chung Ho City, Taipei Hsien, Taiwan 235, R.O.C

Tel. +886 2 8228 0658 Fax +886 2 8228 0659

-mail: tope@ms1.hinet.net

LEM International SA 8, Chemin des Aulx, P.O. Box 35 CH-1228 Plan-les-Ouates Tel. +41 22 706 11 11, Fax +41 22 794 94 78 e-mail: Isa@lem.com; www.lem.com

Publication CAE130621/1

Ameri • Africa